|
|
|
@ -692,12 +692,6 @@
|
|
|
|
|
}
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
"execution_count": 6
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"metadata": {
|
|
|
|
|
"trusted": false
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
@ -820,13 +814,6 @@
|
|
|
|
|
}
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
"execution_count": 9
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"metadata": {
|
|
|
|
|
"trusted": false
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "markdown",
|
|
|
|
@ -849,7 +836,6 @@
|
|
|
|
|
"outputId": "fa06495a-0930-4867-87c5-6023031ea8b5"
|
|
|
|
|
},
|
|
|
|
|
|
|
|
|
|
"execution_count": 10,
|
|
|
|
|
|
|
|
|
|
"source": [
|
|
|
|
|
"example2 = np.array([2, np.nan, 6, 8]) \n",
|
|
|
|
@ -870,12 +856,6 @@
|
|
|
|
|
"execution_count": 13
|
|
|
|
|
}
|
|
|
|
|
]
|
|
|
|
|
"execution_count": 10
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"metadata": {
|
|
|
|
|
"trusted": false
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
@ -900,12 +880,7 @@
|
|
|
|
|
"collapsed": true,
|
|
|
|
|
"trusted": false,
|
|
|
|
|
"id": "yan3QRaOgRr_"
|
|
|
|
|
},
|
|
|
|
|
"source": [
|
|
|
|
|
"# What happens if you add np.nan and None together?\n"
|
|
|
|
|
],
|
|
|
|
|
"execution_count": 14,
|
|
|
|
|
"outputs": []
|
|
|
|
|
}
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "markdown",
|
|
|
|
@ -1590,13 +1565,7 @@
|
|
|
|
|
"collapsed": true,
|
|
|
|
|
"trusted": false,
|
|
|
|
|
"id": "ExUwQRxpgRsF"
|
|
|
|
|
},
|
|
|
|
|
"source": [
|
|
|
|
|
"# How might you go about dropping just column 3?\n",
|
|
|
|
|
"# Hint: remember that you will need to supply both the axis parameter and the how parameter.\n"
|
|
|
|
|
],
|
|
|
|
|
"execution_count": 26,
|
|
|
|
|
"outputs": []
|
|
|
|
|
}
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "markdown",
|
|
|
|
@ -3818,4 +3787,4 @@
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
]
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|