Update README.hi,md

pull/359/head
Bhumika Tewary 4 years ago committed by GitHub
parent 3efe27e11b
commit 28677b8dc5
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -37,3 +37,59 @@
* **सैद्धांतिक**, जहां मौजूदा वैज्ञानिक ज्ञान से नई अवधारणाएं उभरती हैं| * **सैद्धांतिक**, जहां मौजूदा वैज्ञानिक ज्ञान से नई अवधारणाएं उभरती हैं|
* **कम्प्यूटेशनल**, जहां हम कुछ कम्प्यूटेशनल प्रयोगों के आधार पर नए सिद्धांतों की खोज करते हैं| * **कम्प्यूटेशनल**, जहां हम कुछ कम्प्यूटेशनल प्रयोगों के आधार पर नए सिद्धांतों की खोज करते हैं|
* **डेटा-प्रचालित**, डेटा में संबंधों और पैटर्न की खोज पर आधारित| * **डेटा-प्रचालित**, डेटा में संबंधों और पैटर्न की खोज पर आधारित|
## अन्य संबंधित क्षेत्र
चूंकि डेटा व्यापक है, डेटा विज्ञान भी एक व्यापक क्षेत्र है, जो कई अन्य विषयों को छूता है।
<dl>
<dt>डेटाबेस</dt>
<dd>
डेटा को **कैसे स्टोर करें** एक महत्वपूर्ण विचार है, यानी इसे इस तरह से कैसे संरचित किया जाए जिससे तेजी से प्रोसेसिंग हो सके। विभिन्न प्रकार के डेटाबेस हैं जो संरचित और असंरचित डेटा संग्रहीत करते हैं, जिन पर <a href="../../2-Working-with-Data/README.md">हम अपने पाठ्यक्रम में विचार करेंगे।</a>.
</dd>
<dt>बड़ा डेटा</dt>
<dd>
अक्सर हमें अपेक्षाकृत सरल संरचना के साथ बहुत बड़ी मात्रा में डेटा को स्टोर और संसाधित करने की आवश्यकता होती है। उस डेटा को एक कंप्यूटर क्लस्टर पर वितरित तरीके से संग्रहीत करने और इसे कुशलतापूर्वक संसाधित करने के लिए विशेष दृष्टिकोण और उपकरण हैं।
</dd>
<dt>यंत्र अधिगम</dt>
<dd>
डेटा को समझने का एक तरीका **एक मॉडल बनाना** है जो वांछित परिणाम की भविष्यवाणी करने में सक्षम होगा। डेटा से मॉडल विकसित करना **मशीन लर्निंग** कहलाता है। इसके बारे में अधिक जानने के लिए आप हमारे <a href="https://aka.ms/ml-beginners">मशीन लर्निंग फॉर बिगिनर्स</a> पाठ्यक्रम को देखना चाहेंगे।
</dd>
<dt>कृत्रिम होशियारी</dt>
<dd>
आर्टिफिशियल इंटेलिजेंस (एआई) के रूप में जाना जाने वाला मशीन लर्निंग का एक क्षेत्र भी डेटा पर निर्भर करता है, और इसमें उच्च जटिलता वाले मॉडल बनाना शामिल है जो मानव विचार प्रक्रियाओं की नकल करते हैं। एआई विधियां अक्सर हमें असंरचित डेटा (जैसे प्राकृतिक भाषा) को संरचित अंतर्दृष्टि में बदलने की अनुमति देती हैं।
</dd>
<dt>मानसिक- दर्शन</dt>
<dd>
एक इंसान के लिए बड़ी मात्रा में डेटा समझ से बाहर है, लेकिन एक बार जब हम उस डेटा का उपयोग करके उपयोगी विज़ुअलाइज़ेशन बनाते हैं, तो हम डेटा की अधिक समझ बना सकते हैं, और कुछ निष्कर्ष निकाल सकते हैं। इस प्रकार, जानकारी की कल्पना करने के कई तरीके जानना महत्वपूर्ण है - कुछ ऐसा जिसे हम अपने पाठ्यक्रम के <a href="../../3-Data-Visualization/README.md">धारा 3</a> में शामिल करेंगे। . संबंधित क्षेत्रों में सामान्य रूप से **इन्फोग्राफिक्स**, और **मानव-कंप्यूटर इंटरैक्शन** भी शामिल हैं।
</dd>
</dl>
## डेटा के प्रकार
जैसा कि हमने पहले ही उल्लेख किया है, डेटा हर जगह है। बस जरूरत है इसे सही तरीके से पकड़ने की! **संरचित** और **असंरचित** डेटा के बीच अंतर करना उपयोगी है। पूर्व को आम तौर पर कुछ अच्छी तरह से संरचित रूप में दर्शाया जाता है, अक्सर तालिका या तालिकाओं की संख्या के रूप में, जबकि बाद वाला केवल फाइलों का संग्रह होता है। कभी-कभी हम **अर्ध-संरचित** डेटा के बारे में भी बात कर सकते हैं, जिसमें किसी प्रकार की संरचना होती है जो बहुत भिन्न हो सकती है।
| संरचित | अर्द्ध संरचित | असंरचित |
| ---------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------- | --------------------------------------- |
| अपने फोन वाले लोगों की सूची numbers | विकिपीडिया पृष्ठ लिंक के साथ |एनसाइक्लोपीडिया ब्रिटानिका का पाठ |
| पिछले 20 वर्षों से हर मिनट एक इमारत के सभी कमरों में तापमान | लेखकों, प्रकाशन के डेटा और सार के साथ JSON प्रारूप में वैज्ञानिक पत्रों का संग्रह | कॉर्पोरेट दस्तावेज़ों के साथ फ़ाइल साझा करें |
| भवन में प्रवेश करने वाले सभी लोगों की आयु और लिंग का डेटा | इंटरनेट पेज | निगरानी कैमरे से कच्चा वीडियो फ़ीड |
## डेटा कहाँ से प्राप्त करें
डेटा के कई संभावित स्रोत हैं, और उन सभी को सूचीबद्ध करना असंभव होगा! हालाँकि, आइए कुछ विशिष्ट स्थानों का उल्लेख करें जहाँ आप डेटा प्राप्त कर सकते हैं:
* **संरचित**
- **इंटरनेट ऑफ थिंग्स** (IoT), जिसमें तापमान या दबाव सेंसर जैसे विभिन्न सेंसर के डेटा शामिल हैं, बहुत उपयोगी डेटा प्रदान करता है। उदाहरण के लिए, यदि कोई कार्यालय भवन IoT सेंसर से लैस है, तो हम लागत को कम करने के लिए स्वचालित रूप से हीटिंग और प्रकाश व्यवस्था को नियंत्रित कर सकते हैं।
- **सर्वेक्षण** जो हम उपयोगकर्ताओं को खरीदारी के बाद, या किसी वेब साइट पर जाने के बाद पूरा करने के लिए कहते हैं।
- उदाहरण के लिए, **व्यवहार का विश्लेषण** हमें यह समझने में मदद कर सकता है कि उपयोगकर्ता किसी साइट में कितनी गहराई तक जाता है और साइट छोड़ने का सामान्य कारण क्या है।
* **असंरचित**
- **पाठ** अंतर्दृष्टि का एक समृद्ध स्रोत हो सकता है, जैसे समग्र **भावना स्कोर**, या कीवर्ड और अर्थ अर्थ निकालना।
- **छवियां** या **वीडियो**। सड़क पर यातायात का अनुमान लगाने और संभावित ट्रैफिक जाम के बारे में लोगों को सूचित करने के लिए एक निगरानी कैमरे से एक वीडियो का उपयोग किया जा सकता है।
- वेब सर्वर **लॉग्स** का उपयोग यह समझने के लिए किया जा सकता है कि हमारी साइट के कौन से पृष्ठ सबसे अधिक बार देखे जाते हैं, और कितने समय के लिए।
* अर्द्ध संरचित
- **सोशल नेटवर्क** ग्राफ़ उपयोगकर्ता के व्यक्तित्व के बारे में डेटा के महान स्रोत हो सकते हैं और जानकारी के प्रसार में संभावित प्रभावशीलता हो सकती है।
- जब हमारे पास किसी पार्टी से तस्वीरों का एक गुच्छा होता है, तो हम एक दूसरे के साथ तस्वीरें लेने वाले लोगों का ग्राफ बनाकर **ग्रुप डायनेमिक्स** डेटा निकालने का प्रयास कर सकते हैं।
डेटा के विभिन्न संभावित स्रोतों को जानकर, आप विभिन्न परिदृश्यों के बारे में सोचने की कोशिश कर सकते हैं जहां स्थिति को बेहतर तरीके से जानने और व्यावसायिक प्रक्रियाओं को बेहतर बनाने के लिए डेटा विज्ञान तकनीकों को लागू किया जा सकता है।

Loading…
Cancel
Save