| ](../../sketchnotes/02-Ethics.png)|
| ](../../../sketchnotes/02-Ethics.png)|
|:---:|
| डेटा विज्ञान आचार - _[@nitya](https://twitter.com/nitya) द्वारा स्केचनोट_ |
| डेटा विज्ञान नैतिकता - _[@nitya](https://twitter.com/nitya) द्वारा स्केचनोट_ |
---
@ -12,14 +12,12 @@
रुझान यह भी संकेत देते हैं कि हम २०२५ तक [180 zettabytes](https://www.statista.com/statistics/871513/worldwide-data-created/) डेटा का निर्माण और उपभोग करेंगे । **डेटा वैज्ञानिक** के रूप में, यह हमें व्यक्तिगत डेटा तक पहुंचने के लिये अभूतपूर्व स्तर प्रदान करता है । इसका मतलब है कि हम उपयोगकर्ताओं के व्यवहार संबंधी प्रोफाइल बना सकते हैं और निर्णय लेने को इस तरह से प्रभावित कर सकते हैं जो संभावित रूप से एक [मुक्त इच्छा का भ्रम](https://www.datasciencecentral.com/profiles/blogs/the-illusion-of-choice) पैदा करता है जब्कि वह उपयोगकर्ताओं को हमारे द्वारा पसंद किए जाने वाले परिणामों की ओर आकर्षित करना । यह डेटा गोपनीयता और उपयोगकर्ता की सुरक्षा पर भी व्यापक प्रश्न उठाता है ।
Data ethics are now _necessary guardrails_ for data science and engineering, helping us minimize potential harms and unintended consequences from our data-driven actions. The [Gartner Hype Cycle for AI](https://www.gartner.com/smarterwithgartner/2-megatrends-dominate-the-gartner-hype-cycle-for-artificial-intelligence-2020/) identifies relevant trends in digital ethics, responsible AI ,and AI governances as key drivers for larger megatrends around _democratization_ and _industrialization_ of AI.

In this lesson, we'll explore the fascinating area of data ethics - from core concepts and challenges, to case studies and applied AI concepts like governance - that help establish an ethics culture in teams and organizations that work with data and AI.
डेटा नैतिकता अब डेटा विज्ञान और इंजीनियरिंग का _आवश्यक रक्षक_ हैं, जिससे हमें अपने डेटा-संचालित कार्यों से संभावित नुकसान और अनपेक्षित परिणामों को नीचे रखने में मदद मिलती है । [AI के लिए गार्टनर हाइप साइकिल](https://www.gartner.com/smarterwithgartner/2-megatrends-dominate-the-gartner-hype-cycle-for-artificial-intelligence-2020/) डिजिटल नैतिकता में उचित रुझानों की पहचान करता है AI के _democratization_ और _industrialization_ के आसपास बड़े मेगाट्रेंड के लिए प्रमुख ड्राइवर के रूप में जिम्मेदार AI की ज़िम्मेदारी और AI शासन।

इस पाठ में, हम डेटा नैतिकता के आकर्षक क्षेत्र के बारे में सीखेंगे - मूल अवधारणाओं और चुनौतियों से लेकर केस-स्टडी और शासन जैसी एप्लाइड AI अवधारणाओं तक - जो डेटा और AI के साथ काम करने वाली समूह और संगठनों में नैतिकता संस्कृति स्थापित करने में मदद करते हैं।