You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
kubeSourceCodeNote/scheduler/Kubernetes源码学习-Scheduler-P5...

24 KiB

P5-Pod优先级抢占调度

1. 前言

前面的两篇文章中已经讲过了调度pod的算法(predicate/priority)在kubernetes v1.8版本之后可以指定pod优先级(v1alpha1)若资源不足导致高优先级pod匹配失败高优先级pod会转而将部分低优先级pod驱逐以抢占低优先级pod的资源尽力保障自身能够调度成功那么本篇就从代码的层面展开看一看pod抢占调度的逻辑。

2. 抢占调度入口

在P1-入口篇中我们找到了调度算法计算的入口,随后展开了调度算法的两篇解读,本篇我们再次回到此入口的位置,接着往下看:

pkg/scheduler/scheduler.go:457

func (sched *Scheduler) scheduleOne() {
	... // 省略
  
  // 调度算法计算入口
	scheduleResult, err := sched.schedule(pod) 
  
	if err != nil {
		// schedule() may have failed because the pod would not fit on any host, so we try to
		// preempt, with the expectation that the next time the pod is tried for scheduling it
		// will fit due to the preemption. It is also possible that a different pod will schedule
		// into the resources that were preempted, but this is harmless.
		if fitError, ok := err.(*core.FitError); ok {
			if !util.PodPriorityEnabled() || sched.config.DisablePreemption {
				klog.V(3).Infof("Pod priority feature is not enabled or preemption is disabled by scheduler configuration." +
					" No preemption is performed.")
			} else {
				preemptionStartTime := time.Now()
				sched.preempt(pod, fitError)  // 抢占调度逻辑入口
				metrics.PreemptionAttempts.Inc()
			  ... // 省略
			metrics.PodScheduleFailures.Inc()
		} else {
			klog.Errorf("error selecting node for pod: %v", err)
			metrics.PodScheduleErrors.Inc()
		}
		return
	}

注释中可看出若在筛选算法中并未找到fitNode且返回了fitError那么就会进入基于pod优先级的资源抢占的逻辑入口是sched.preempt(pod, fitError)函数。在展开抢占逻辑之前我们先来看一看pod优先级是怎么一回事吧。

2.1. Pod优先级的定义

字面意义上来理解pod优先级可以在调度的时候为高优先级的pod提供资源空间保障若出现资源紧张的情况则在其他约束规则允许的情况下高优先级pod会抢占低优先级pod的资源。此功能在1.11版本以后默认开启默认情况下pod的优先级是0优先级值high is better具体说明来看看官方文档的解释吧:

Pod Priority and Preemption

下面列举一个pod优先级使用的实例

# Example PriorityClass
apiVersion: scheduling.k8s.io/v1
kind: PriorityClass
metadata:
  name: high-priority
value: 1000000
globalDefault: false
description: "This priority class should be used for XYZ service pods only."

# Example Pod spec
apiVersion: v1
kind: Pod
metadata:
  name: nginx
  labels:
    env: test
spec:
  containers:
  - name: nginx
    image: nginx
    imagePullPolicy: IfNotPresent
  priorityClassName: high-priority

了解了定义及如何使用,那我们来看看代码层面是如何实现的吧!

3. 抢占调度算法

从上面的入口跳转:

pkg/scheduler/scheduler.go:469 --> pkg/scheduler/scheduler.go:290

func (sched *Scheduler) preempt(preemptor *v1.Pod, scheduleErr error) (string, error) {
	preemptor, err := sched.config.PodPreemptor.GetUpdatedPod(preemptor)
	if err != nil {
		klog.Errorf("Error getting the updated preemptor pod object: %v", err)
		return "", err
	}
  // 通过默认注册的抢占算法计算得出最终被执行抢占调度的node、node上需要驱逐的pod等信息
	node, victims, nominatedPodsToClear, err := sched.config.Algorithm.Preempt(preemptor, sched.config.NodeLister, scheduleErr)
	if err != nil {
		klog.Errorf("Error preempting victims to make room for %v/%v.", preemptor.Namespace, preemptor.Name)
		return "", err
	}
	var nodeName = ""
	if node != nil {
		nodeName = node.Name
		// Update the scheduling queue with the nominated pod information. Without
		// this, there would be a race condition between the next scheduling cycle
		// and the time the scheduler receives a Pod Update for the nominated pod.
    // 给调度队列内的preemptor pod加上提名node信息避免下一个调度周期出现冲突
		sched.config.SchedulingQueue.UpdateNominatedPodForNode(preemptor, nodeName)

		// Make a call to update nominated node name of the pod on the API server.
    // 给待调度pod指定NominatedNodeNamepod.Status.NominatedNodeName = nodeName
		err = sched.config.PodPreemptor.SetNominatedNodeName(preemptor, nodeName)
		if err != nil {
			klog.Errorf("Error in preemption process. Cannot update pod %v/%v annotations: %v", preemptor.Namespace, preemptor.Name, err)
			sched.config.SchedulingQueue.DeleteNominatedPodIfExists(preemptor)
			return "", err
		}

		for _, victim := range victims {
      // 对node上需要驱逐的pod执行删除操作
			if err := sched.config.PodPreemptor.DeletePod(victim); err != nil {
				klog.Errorf("Error preempting pod %v/%v: %v", victim.Namespace, victim.Name, err)
				return "", err
			}
			sched.config.Recorder.Eventf(victim, v1.EventTypeNormal, "Preempted", "by %v/%v on node %v", preemptor.Namespace, preemptor.Name, nodeName)
		}
		metrics.PreemptionVictims.Set(float64(len(victims)))
	}
	// Clearing nominated pods should happen outside of "if node != nil". Node could
	// be nil when a pod with nominated node name is eligible to preempt again,
	// but preemption logic does not find any node for it. In that case Preempt()
	// function of generic_scheduler.go returns the pod itself for removal of the annotation.
  // 当找不到合适的抢占node时可能是因为preemptor pod已经有了提名的node但它又执行了一遍抢占逻辑说明它
  // 在上一次调度周期中没有调度成功因此删除调度队列中比当前preemptor pod优先级更低的pod所指定的提名
  // node信息(pod.Status.NominatedNodeName)
	for _, p := range nominatedPodsToClear {
		rErr := sched.config.PodPreemptor.RemoveNominatedNodeName(p)
		if rErr != nil {
			klog.Errorf("Cannot remove nominated node annotation of pod: %v", rErr)
			// We do not return as this error is not critical.
		}
	}
	return nodeName, err
}

如优先级筛选算法一样调度算法最终也是要挑选出一个供以实际运行抢占调度逻辑的node那么一起来看看这个计算算法是怎么样的。如schedule()方法一样preempt()的默认方法也在generic_scheduler.go这个文件中:

pkg/scheduler/core/generic_scheduler.go:288

将函数内拆成几个重要的部分,其余部分省略,逐个说明

func (g *genericScheduler) Preempt(pod *v1.Pod, nodeLister algorithm.NodeLister, scheduleErr error) (*v1.Node, []*v1.Pod, []*v1.Pod, error) {
	// ... 省略
  
  // 每次开始抢占调度之前检查一下当前pod是否已经有了提名抢占调度的节点且该节点上当前不包含正在终结中的pod若pod已有提名调度节点且该节点上已经有pod正在终结中则视为已经在执行抢占的动作了所以不再往下重复执行。可以自行进去查看比较简单不拿出来讲了。
	if !podEligibleToPreemptOthers(pod, g.nodeInfoSnapshot.NodeInfoMap) {
		klog.V(5).Infof("Pod %v/%v is not eligible for more preemption.", pod.Namespace, pod.Name)
		return nil, nil, nil, nil
	}
  // ... 省略
  
  // potentialNodes找出潜在的可能进行抢占调度的节点下方详解
	potentialNodes := nodesWherePreemptionMightHelp(allNodes, fitError.FailedPredicates)

  // ... 省略
  
  // pdb,pod Disruption Budget,是用来保障可用副本的一种功能,下方详解
	pdbs, err := g.pdbLister.List(labels.Everything())
	if err != nil {
		return nil, nil, nil, err
	}
  
  // 最重要的抢占算法入口,下方详解
	nodeToVictims, err := selectNodesForPreemption(pod, g.nodeInfoSnapshot.NodeInfoMap, potentialNodes, g.predicates,
		g.predicateMetaProducer, g.schedulingQueue, pdbs)
	if err != nil {
		return nil, nil, nil, err
	}

	// ... 省略
  
  // candidateNode从所有提名的node中挑选一个真正执行抢占步骤
	candidateNode := pickOneNodeForPreemption(nodeToVictims)
	if candidateNode == nil {
		return nil, nil, nil, nil
	}

	// 返回3个值分别是选中的node、node上将要驱逐的pod、调度队列中比当前pod优先级更低的pod
	nominatedPods := g.getLowerPriorityNominatedPods(pod, candidateNode.Name)
	if nodeInfo, ok := g.nodeInfoSnapshot.NodeInfoMap[candidateNode.Name]; ok {
		return nodeInfo.Node(), nodeToVictims[candidateNode].Pods, nominatedPods, nil
	}

	return nil, nil, nil, fmt.Errorf(
		"preemption failed: the target node %s has been deleted from scheduler cache",
		candidateNode.Name)
}

3.1. potentialNodes

第一步先找出所有潜在的可能会参与抢占调度的node,何为潜在可能呢意思是node调度此pod调度失败的原因并非"硬伤"类原因。所谓硬伤原因指的是即使驱逐调几个pod也无法改变此node无法运行这个pod的事实。这些硬伤包括哪些来看看代码

pkg/scheduler/core/generic_scheduler.go:306 -> pkg/scheduler/core/generic_scheduler.go:1082

func nodesWherePreemptionMightHelp(nodes []*v1.Node, failedPredicatesMap FailedPredicateMap) []*v1.Node {
	potentialNodes := []*v1.Node{}
	for _, node := range nodes {
		unresolvableReasonExist := false
		failedPredicates, _ := failedPredicatesMap[node.Name]
		// If we assume that scheduler looks at all nodes and populates the failedPredicateMap
		// (which is the case today), the !found case should never happen, but we'd prefer
		// to rely less on such assumptions in the code when checking does not impose
		// significant overhead.
		// Also, we currently assume all failures returned by extender as resolvable.
		for _, failedPredicate := range failedPredicates {
			switch failedPredicate {
			case
        // 下面所有的failedPredicates都视为"硬伤"因此若相应的节点上若出现下面的失败原因之一则视为该node不可参与抢占调度。
				predicates.ErrNodeSelectorNotMatch,
				predicates.ErrPodAffinityRulesNotMatch,
				predicates.ErrPodNotMatchHostName,
				predicates.ErrTaintsTolerationsNotMatch,
				predicates.ErrNodeLabelPresenceViolated,
				// Node conditions won't change when scheduler simulates removal of preemption victims.
				// So, it is pointless to try nodes that have not been able to host the pod due to node
				// conditions. These include ErrNodeNotReady, ErrNodeUnderPIDPressure, ErrNodeUnderMemoryPressure, ....
				predicates.ErrNodeNotReady,
				predicates.ErrNodeNetworkUnavailable,
				predicates.ErrNodeUnderDiskPressure,
				predicates.ErrNodeUnderPIDPressure,
				predicates.ErrNodeUnderMemoryPressure,
				predicates.ErrNodeUnschedulable,
				predicates.ErrNodeUnknownCondition,
				predicates.ErrVolumeZoneConflict,
				predicates.ErrVolumeNodeConflict,
				predicates.ErrVolumeBindConflict:
				unresolvableReasonExist = true
				break
			}
		}
		if !unresolvableReasonExist {
			klog.V(3).Infof("Node %v is a potential node for preemption.", node.Name)
			potentialNodes = append(potentialNodes, node)
		}
	}
	return potentialNodes
}

3.2. Pod Disruption Budget(pdb)

这种资源类型本人没有实际应用过查阅了一下官方的手册实际上它也是kubernetes设计的一种抽象资源主要用作面对主动中断时保障副本可用数量的一种功能与deployment的maxUnavailable不一样maxUnavailable是在滚动更新(非主动中断)时用来保障pdb通常是面对主动中断的场景例如删除pod,drain node等主动操作更多详细说明参考官方的手册:

Specifying a Disruption Budget for your Application

资源实例:

apiVersion: policy/v1beta1
kind: PodDisruptionBudget
metadata:
  name: zk-pdb
spec:
  minAvailable: 2
  selector:
    matchLabels:
      app: zookeeper	
$ kubectl get poddisruptionbudgets
NAME      MIN-AVAILABLE   ALLOWED-DISRUPTIONS   AGE
zk-pdb    2               1                     7s


$ kubectl get poddisruptionbudgets zk-pdb -o yaml
apiVersion: policy/v1beta1
kind: PodDisruptionBudget
metadata:
  creationTimestamp: 2017-08-28T02:38:26Z
  generation: 1
  name: zk-pdb
...
status:
  currentHealthy: 3
  desiredHealthy: 3
  disruptedPods: null
  disruptionsAllowed: 1
  expectedPods: 3
  observedGeneration: 1

为什么这个资源相关的逻辑会出现在抢占调度里面呢因为设计者将pod抢占造成的低优先级pod驱逐动作视为主动中断有了这一层理解我们接着往下。

3.3. nodeToVictims

selectNodesForPreemption()函数很重要这个函数将会返回所有可行的node驱逐方案

pkg/scheduler/core/generic_scheduler.go:316 selectNodesForPreemption --> pkg/scheduler/core/generic_scheduler.go:916

func selectNodesForPreemption(pod *v1.Pod,
	nodeNameToInfo map[string]*schedulernodeinfo.NodeInfo,
	potentialNodes []*v1.Node,
	fitPredicates map[string]predicates.FitPredicate,
	metadataProducer predicates.PredicateMetadataProducer,
	queue internalqueue.SchedulingQueue,
	pdbs []*policy.PodDisruptionBudget,
) (map[*v1.Node]*schedulerapi.Victims, error) {
  // 返回的结构体类型是mapkey是*v1.Nodevalue是一个结构体包含两个元素:node上待驱逐的pod信息和将会违反PDB规则的次数
	nodeToVictims := map[*v1.Node]*schedulerapi.Victims{}
	var resultLock sync.Mutex

	// We can use the same metadata producer for all nodes.
	meta := metadataProducer(pod, nodeNameToInfo)
	checkNode := func(i int) {
		nodeName := potentialNodes[i].Name
		var metaCopy predicates.PredicateMetadata
		if meta != nil {
			metaCopy = meta.ShallowCopy()
		}
    // selectVictimsOnNode()是核心计算的函数
		pods, numPDBViolations, fits := selectVictimsOnNode(pod, metaCopy, nodeNameToInfo[nodeName], fitPredicates, queue, pdbs)
		if fits {
			resultLock.Lock()
			victims := schedulerapi.Victims{
				Pods:             pods,
				NumPDBViolations: numPDBViolations,
			}
			nodeToVictims[potentialNodes[i]] = &victims
			resultLock.Unlock()
		}
	}
  // 熟悉的并发控制模型
	workqueue.ParallelizeUntil(context.TODO(), 16, len(potentialNodes), checkNode)
	return nodeToVictims, nil
}

上面已在代码中对重要部分进行注释不难发现重要的计算函数是selectVictimsOnNode()函数每个node所需要驱逐的pod以及违反PDB规则次数信息都由此函数来计算返回最终组成nodeToVictims这个map返回给上层调用函数。所以接着来看selectVictimsOnNode()函数是怎么运行的。

selectVictimsOnNode

func selectVictimsOnNode(
	pod *v1.Pod,
	meta predicates.PredicateMetadata,
	nodeInfo *schedulernodeinfo.NodeInfo,
	fitPredicates map[string]predicates.FitPredicate,
	queue internalqueue.SchedulingQueue,
	pdbs []*policy.PodDisruptionBudget,
) ([]*v1.Pod, int, bool) {
	if nodeInfo == nil {
		return nil, 0, false
	}
  
  // 潜在的受害者(pod)按优先级排序的有序list高优先级的排序靠前低优先级的排序靠后
	potentialVictims := util.SortableList{CompFunc: util.HigherPriorityPod}
  // 在实际调度之前所有的资源的考量计算都只能是预估因此不能实际实施到node上所以基于node的元数据进行一个复制将node信息的复制样本来参与计算最终计算得到正确的结果后才会考虑实际往node上实施。
	nodeInfoCopy := nodeInfo.Clone()
  
  // 基于node复制样本假设减去一个pod之后复制样本重新计算得到的数据。例如node a上运行着有若干pod假设减去了其上的pod1pod1 request的内存是4Gi那么可假设node可分配的内存就多了4Gi
	removePod := func(rp *v1.Pod) {
		nodeInfoCopy.RemovePod(rp)
		if meta != nil {
			meta.RemovePod(rp)
		}
	}
  
  // 基于node复制样本假设加上一个pod之后复制样本重新计算得到的数据。
	addPod := func(ap *v1.Pod) {
		nodeInfoCopy.AddPod(ap)
		if meta != nil {
			meta.AddPod(ap, nodeInfoCopy)
		}
	}

  // 首先枚举出node上所有的低于待调度pod优先级的pod并将它们加入潜在受害者potentialVictims计算假设剔出它们后node上现有的资源信息
	podPriority := util.GetPodPriority(pod)
	for _, p := range nodeInfoCopy.Pods() {
		if util.GetPodPriority(p) < podPriority {
			potentialVictims.Items = append(potentialVictims.Items, p)
			removePod(p)
		}
	}
	potentialVictims.Sort()

  // 第二步判断待调度pod是否fit此node主要是亲和性方面的考量这个podFitsOnNode函数前面筛选算法已经讲过了这里不再复述这个函数通过后会把待调度pod的request资源加入nodeInfoCopy内。
	if fits, _, err := podFitsOnNode(pod, meta, nodeInfoCopy, fitPredicates, queue, false); !fits {
		if err != nil {
			klog.Warningf("Encountered error while selecting victims on node %v: %v", nodeInfo.Node().Name, err)
		}
		return nil, 0, false
	}
	var victims []*v1.Pod
	numViolatingVictim := 0
  
  // 第三步将前面枚举出的低优先级的pod有序list拆分为两个有序list一个是违反了PDB规则的(pdb.Status.PodDisruptionsAllowed <= 0,这个值等于0则代表理论上要求不能出现中断的pod副本)一个是不违反PDB规则的。
	violatingVictims, nonViolatingVictims := filterPodsWithPDBViolation(potentialVictims.Items, pdbs)
  
  // 第四步前面枚举假设把所有的低优先级pod都剔除了但实际上可能不用剔除这么多因此保证了待调度pod计算进来之后这里再用贪心法将低优先级的pod按优先级排序尽可能多地加入回来最终无法调度的pod才归为实际驱逐的pod。显而易见的是优先保障有PDB约束的pod。
	reprievePod := func(p *v1.Pod) bool {
		addPod(p)
		fits, _, _ := podFitsOnNode(pod, meta, nodeInfoCopy, fitPredicates, queue, false)
		if !fits {
			removePod(p)
			victims = append(victims, p)
			klog.V(5).Infof("Pod %v/%v is a potential preemption victim on node %v.", p.Namespace, p.Name, nodeInfo.Node().Name)
		}
		return fits
	}
	for _, p := range violatingVictims {
		if !reprievePod(p) {
			numViolatingVictim++
		}
	}
	// Now we try to reprieve non-violating victims.
	for _, p := range nonViolatingVictims {
		reprievePod(p)
	}
  // 第五步返回最终node的运算结果分别是驱逐的pod list以及驱逐的数量
	return victims, numViolatingVictim, true
}

这个函数分5步先是枚举出所有的低优先级pod再贪心保障尽量多的pod能正常运行从而计算出最终需要被驱逐的pod及相关信息详见代码内注释。

3.4. candidateNode

上面函数返回每一个可抢占的node各自的抢占方案后这里就需要筛选其中一个node来实际执行抢占调度操作。

pkg/scheduler/core/generic_scheduler.go:330 pickOneNodeForPreemption() --> pkg/scheduler/core/generic_scheduler.go:809

func pickOneNodeForPreemption(nodesToVictims map[*v1.Node]*schedulerapi.Victims) *v1.Node {
	if len(nodesToVictims) == 0 {
		return nil
	}
	minNumPDBViolatingPods := math.MaxInt32
	var minNodes1 []*v1.Node
	lenNodes1 := 0
	for node, victims := range nodesToVictims {
		if len(victims.Pods) == 0 {
		  // 可能在调度的过程中有极小的概率某个node上有pod终结了使node上不再有需要驱逐的pod那么pod可直接调度到该node上
			return node
		}
		// 按违反PDB约束的次数排序越少的node优先级越高若最大优先级的node只有一个则直接返回违反次数最小的node若有多个则进入下一步筛选
		numPDBViolatingPods := victims.NumPDBViolations
		if numPDBViolatingPods < minNumPDBViolatingPods {
			minNumPDBViolatingPods = numPDBViolatingPods
			minNodes1 = nil
			lenNodes1 = 0
		}
		if numPDBViolatingPods == minNumPDBViolatingPods {
			minNodes1 = append(minNodes1, node)
			lenNodes1++
		}
	}
	if lenNodes1 == 1 {
		return minNodes1[0]
	}

	// 按node上需驱逐的第一个pod(即需驱逐的优先级最高的pod)的优先级大小排序pod[0]优先级越小则所属的node优先级越高若最大优先级的node只有一个则直接返回此node若有多个则进入下一步筛选
	minHighestPriority := int32(math.MaxInt32)
	var minNodes2 = make([]*v1.Node, lenNodes1)
	lenNodes2 := 0
	for i := 0; i < lenNodes1; i++ {
		node := minNodes1[i]
		victims := nodesToVictims[node]
		// highestPodPriority is the highest priority among the victims on this node.
		highestPodPriority := util.GetPodPriority(victims.Pods[0])
		if highestPodPriority < minHighestPriority {
			minHighestPriority = highestPodPriority
			lenNodes2 = 0
		}
		if highestPodPriority == minHighestPriority {
			minNodes2[lenNodes2] = node
			lenNodes2++
		}
	}
	if lenNodes2 == 1 {
		return minNodes2[0]
	}

	// 按node上需驱逐的所有的pod的优先级总和计算总和越小node优先级越高若最大优先级的node只有一个则直接返回此node若有多个则进入下一步筛选
	minSumPriorities := int64(math.MaxInt64)
	lenNodes1 = 0
	for i := 0; i < lenNodes2; i++ {
		var sumPriorities int64
		node := minNodes2[i]
		for _, pod := range nodesToVictims[node].Pods {
			// We add MaxInt32+1 to all priorities to make all of them >= 0. This is
			// needed so that a node with a few pods with negative priority is not
			// picked over a node with a smaller number of pods with the same negative
			// priority (and similar scenarios).
			sumPriorities += int64(util.GetPodPriority(pod)) + int64(math.MaxInt32+1)
		}
		if sumPriorities < minSumPriorities {
			minSumPriorities = sumPriorities
			lenNodes1 = 0
		}
		if sumPriorities == minSumPriorities {
			minNodes1[lenNodes1] = node
			lenNodes1++
		}
	}
	if lenNodes1 == 1 {
		return minNodes1[0]
	}

	// 按node上需驱逐的所有的pod数量计算数量越少node优先级越高若最大优先级的node只有一个则直接返回此node若有多个则进入下一步筛选
	minNumPods := math.MaxInt32
	lenNodes2 = 0
	for i := 0; i < lenNodes1; i++ {
		node := minNodes1[i]
		numPods := len(nodesToVictims[node].Pods)
		if numPods < minNumPods {
			minNumPods = numPods
			lenNodes2 = 0
		}
		if numPods == minNumPods {
			minNodes2[lenNodes2] = node
			lenNodes2++
		}
	}
	// 若经过上面四个步骤的筛选筛选出的node还是不止一个那么就挑选其中的第一个作为最后选中被执行抢占调度的node
	if lenNodes2 > 0 {
		return minNodes2[0]
	}
	klog.Errorf("Error in logic of node scoring for preemption. We should never reach here!")
	return nil
}

上面代码结合注释可以归纳出这个函数中做了非常细致地检查最高分如下4个步骤来对node进行优先级排序筛选出一个最终合适的node来被执行抢占调度pod的操作

1.按违反PDB约束的次数排序

2.按node上需驱逐的第一个pod(即需驱逐的优先级最高的pod)的优先级大小排序

3.按node上需驱逐的所有的pod的优先级总和计算排序

4.按node上需驱逐的所有的pod数量计算排序

5.若经过上面四个步骤的筛选筛选出的node还是不止一个那么就挑选其中的第一个作为最后选中node

4. 总结

抢占调度的逻辑可以说是非常细致和精彩,例如

1.从资源计算的角度:

  • 基于nodeInfo快照的计算所有计算在最终确定实施之前都是预计算
  • 先枚举出所有低优先级的pod保障待调度pod能充分获取资源
  • 在待调度pod能运行后再尽力保障最多的低优先级pod能同时运行

2.从node选取的角度

  • 分4个步骤筛选以选出驱逐造成影响最小一个node

本章完,感谢阅读!