|
|
|
@ -2,7 +2,7 @@ package 动态规划.q1143_最长公共子序列;
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* 动态规划 dp[i + 1][j + 1] = Math.max(dp[i+1][j], dp[i][j+1]) o(m*n)
|
|
|
|
|
*
|
|
|
|
|
* <p>
|
|
|
|
|
* 若题目为最长公共子串,则在c1,c2不相等时不做处理(赋值0),在遍历过程中记录最大值即可
|
|
|
|
|
*/
|
|
|
|
|
public class Solution {
|
|
|
|
@ -25,4 +25,37 @@ public class Solution {
|
|
|
|
|
}
|
|
|
|
|
return dp[m][n];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* 最长公共字串
|
|
|
|
|
*
|
|
|
|
|
* @param str1
|
|
|
|
|
* @param str2
|
|
|
|
|
* @return
|
|
|
|
|
*/
|
|
|
|
|
public static String longestCommonSubstring(String str1, String str2) {
|
|
|
|
|
int m = str1.length();
|
|
|
|
|
int n = str2.length();
|
|
|
|
|
int[][] dp = new int[m + 1][n + 1];
|
|
|
|
|
int maxLength = 0;
|
|
|
|
|
int endIndex = -1;
|
|
|
|
|
|
|
|
|
|
for (int i = 1; i <= m; i++) {
|
|
|
|
|
for (int j = 1; j <= n; j++) {
|
|
|
|
|
if (str1.charAt(i - 1) == str2.charAt(j - 1)) {
|
|
|
|
|
dp[i][j] = dp[i - 1][j - 1] + 1;
|
|
|
|
|
if (dp[i][j] > maxLength) {
|
|
|
|
|
maxLength = dp[i][j];
|
|
|
|
|
endIndex = i - 1;
|
|
|
|
|
}
|
|
|
|
|
} else {
|
|
|
|
|
dp[i][j] = 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
if (maxLength == 0) {
|
|
|
|
|
return "";
|
|
|
|
|
}
|
|
|
|
|
return str1.substring(endIndex - maxLength + 1, endIndex + 1);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|