|
|
@ -49225,6 +49225,17 @@
|
|
|
|
}
|
|
|
|
}
|
|
|
|
],
|
|
|
|
],
|
|
|
|
"source": [
|
|
|
|
"source": [
|
|
|
|
|
|
|
|
"\"\"\"\n",
|
|
|
|
|
|
|
|
"tf.placeholder:\n",
|
|
|
|
|
|
|
|
" 在神经网络构建graph的时候在模型中的占位,此时没有把数据传入模型,只会分配必要的内存。运行模型的时候通过feed_dict()函数向占位符喂入数据。\n",
|
|
|
|
|
|
|
|
" dtype:数据类型。常用的是tf.float32,tf.float64等数值类型\n",
|
|
|
|
|
|
|
|
" shape:数据形状。默认是None(一维),也可以是多维\n",
|
|
|
|
|
|
|
|
" name:名称\n",
|
|
|
|
|
|
|
|
"tf.get_variable:\n",
|
|
|
|
|
|
|
|
" 创建新的tensorflow变量\n",
|
|
|
|
|
|
|
|
" 第一列:名称\n",
|
|
|
|
|
|
|
|
" shape:变量的形状\n",
|
|
|
|
|
|
|
|
"\"\"\"\n",
|
|
|
|
"n_features = 12\n",
|
|
|
|
"n_features = 12\n",
|
|
|
|
"n_hu = 8\n",
|
|
|
|
"n_hu = 8\n",
|
|
|
|
"with tf.variable_scope('train'): # tf.variable_scope用来指定变量的作用域\n",
|
|
|
|
"with tf.variable_scope('train'): # tf.variable_scope用来指定变量的作用域\n",
|
|
|
@ -49233,7 +49244,7 @@
|
|
|
|
" lr = tf.placeholder(tf.float32, [], name='learning_rate') # 定义学习率\n",
|
|
|
|
" lr = tf.placeholder(tf.float32, [], name='learning_rate') # 定义学习率\n",
|
|
|
|
" \n",
|
|
|
|
" \n",
|
|
|
|
" # 隐藏层到输出层的参数W, b,n_hu隐藏单元的个数\n",
|
|
|
|
" # 隐藏层到输出层的参数W, b,n_hu隐藏单元的个数\n",
|
|
|
|
" W_out = tf.get_variable('W_out', [n_hu, 1]) \n",
|
|
|
|
" W_out = tf.get_variable('W_out', [n_hu, 1])\n",
|
|
|
|
" b_out = tf.get_variable('b_out', [1])\n",
|
|
|
|
" b_out = tf.get_variable('b_out', [1])\n",
|
|
|
|
" \n",
|
|
|
|
" \n",
|
|
|
|
" # x(batch_size, seq_length, n_features)\n",
|
|
|
|
" # x(batch_size, seq_length, n_features)\n",
|
|
|
|