|
|
@ -351,7 +351,6 @@
|
|
|
|
]
|
|
|
|
]
|
|
|
|
},
|
|
|
|
},
|
|
|
|
{
|
|
|
|
{
|
|
|
|
"attachments": {},
|
|
|
|
|
|
|
|
"cell_type": "markdown",
|
|
|
|
"cell_type": "markdown",
|
|
|
|
"metadata": {},
|
|
|
|
"metadata": {},
|
|
|
|
"source": [
|
|
|
|
"source": [
|
|
|
@ -379,7 +378,6 @@
|
|
|
|
]
|
|
|
|
]
|
|
|
|
},
|
|
|
|
},
|
|
|
|
{
|
|
|
|
{
|
|
|
|
"attachments": {},
|
|
|
|
|
|
|
|
"cell_type": "markdown",
|
|
|
|
"cell_type": "markdown",
|
|
|
|
"metadata": {},
|
|
|
|
"metadata": {},
|
|
|
|
"source": [
|
|
|
|
"source": [
|
|
|
@ -399,6 +397,116 @@
|
|
|
|
"<img src=\"assets/20201115152913.png\" width=\"50%\">"
|
|
|
|
"<img src=\"assets/20201115152913.png\" width=\"50%\">"
|
|
|
|
]
|
|
|
|
]
|
|
|
|
},
|
|
|
|
},
|
|
|
|
|
|
|
|
{
|
|
|
|
|
|
|
|
"cell_type": "markdown",
|
|
|
|
|
|
|
|
"metadata": {},
|
|
|
|
|
|
|
|
"source": [
|
|
|
|
|
|
|
|
"## T检验"
|
|
|
|
|
|
|
|
]
|
|
|
|
|
|
|
|
},
|
|
|
|
|
|
|
|
{
|
|
|
|
|
|
|
|
"cell_type": "markdown",
|
|
|
|
|
|
|
|
"metadata": {},
|
|
|
|
|
|
|
|
"source": [
|
|
|
|
|
|
|
|
"### 根据研究设计,t检验有三种形式\n",
|
|
|
|
|
|
|
|
"<ul>\n",
|
|
|
|
|
|
|
|
" <li>单个样本的检验</li>\n",
|
|
|
|
|
|
|
|
" 用来比较一组数据的平均值和一个数值有无差异。例如,你选取了5个人,测定了他们的身高,要看这五个人的身高平均值是否高于、低于还是等于1.70m,就需要用这个检验方法。\n",
|
|
|
|
|
|
|
|
" <li>配对样本均数t检验(非独立两样本均数t检验)</li>\n",
|
|
|
|
|
|
|
|
" 用来看一组样本在处理前后的平均值有无差异。比如,你选取了5个人,分别在饭前和饭后测量了他们的体重,想检测吃饭对他们的体重有无影响,就需要用这个t检验。\n",
|
|
|
|
|
|
|
|
" <li>两个独立样本均数t检验</li>\n",
|
|
|
|
|
|
|
|
" 用来看两组数据的平均值有无差异。比如,你选取了5男5女,想看男女之间身高有无差异,这样,男的一组,女的一组,这两个组之间的身高平均值的大小比较可用这种方法。\n",
|
|
|
|
|
|
|
|
"</ul>\n",
|
|
|
|
|
|
|
|
"<br><br>\n",
|
|
|
|
|
|
|
|
"\n",
|
|
|
|
|
|
|
|
"### 单个样本t检验\n",
|
|
|
|
|
|
|
|
"\n",
|
|
|
|
|
|
|
|
"<ul>\n",
|
|
|
|
|
|
|
|
" <li>又称单样本均数t检验(one sample t test),适用于样本均数与己知总体均数μ0的比较,目的是检验样本均数所代表的总体均数μ是否与已知总体均数μ0有差别。\n",
|
|
|
|
|
|
|
|
" <li>已知总体均数μ0一般为标准值、理论值或经大量观察得到的较稳定的指标值。\n",
|
|
|
|
|
|
|
|
" <li>应用条件,总体标准α未知的小样本资料,且服从正态分布。"
|
|
|
|
|
|
|
|
]
|
|
|
|
|
|
|
|
},
|
|
|
|
|
|
|
|
{
|
|
|
|
|
|
|
|
"cell_type": "markdown",
|
|
|
|
|
|
|
|
"metadata": {},
|
|
|
|
|
|
|
|
"source": [
|
|
|
|
|
|
|
|
"#### 实例\n",
|
|
|
|
|
|
|
|
"以往通过大规模调査已知某地新生儿出生体重为3.30kg。从该地难产儿中随机抽取35名新生儿,平均出生体重为3.42kg,标准差为0.40kg,问该地难产儿出生体重是否与一般新生儿体重不同?"
|
|
|
|
|
|
|
|
]
|
|
|
|
|
|
|
|
},
|
|
|
|
|
|
|
|
{
|
|
|
|
|
|
|
|
"cell_type": "markdown",
|
|
|
|
|
|
|
|
"metadata": {},
|
|
|
|
|
|
|
|
"source": [
|
|
|
|
|
|
|
|
"建立检验假设,确定检验水准\n",
|
|
|
|
|
|
|
|
"H0: μ=μ0;H1:μ≠μ0;α=0.05\n",
|
|
|
|
|
|
|
|
"<br>\n",
|
|
|
|
|
|
|
|
"计算检验统计量\n",
|
|
|
|
|
|
|
|
"$$\n",
|
|
|
|
|
|
|
|
"t = \\frac{\\overline{X} - μ_0}{S_{\\overline{x}}}\n",
|
|
|
|
|
|
|
|
"= \\frac{\\overline{X}-μ_0}{S/\\sqrt{n}}\n",
|
|
|
|
|
|
|
|
"= \\frac{3.42-3.30}{0.40/\\sqrt{35}}\n",
|
|
|
|
|
|
|
|
"= 1.77\n",
|
|
|
|
|
|
|
|
"$$"
|
|
|
|
|
|
|
|
]
|
|
|
|
|
|
|
|
},
|
|
|
|
|
|
|
|
{
|
|
|
|
|
|
|
|
"cell_type": "markdown",
|
|
|
|
|
|
|
|
"metadata": {},
|
|
|
|
|
|
|
|
"source": [
|
|
|
|
|
|
|
|
"本例自由度v=n-1=35-1=34,查表得得t0.052/34=2.032。因为t<t0.052/34,故P>0.05,按α=0.05水准,不拒绝H0,差别无统计学意义,尚不能认为该地难产;\n",
|
|
|
|
|
|
|
|
"<br>自由度:可以随意变换的个数是多少"
|
|
|
|
|
|
|
|
]
|
|
|
|
|
|
|
|
},
|
|
|
|
|
|
|
|
{
|
|
|
|
|
|
|
|
"cell_type": "markdown",
|
|
|
|
|
|
|
|
"metadata": {},
|
|
|
|
|
|
|
|
"source": [
|
|
|
|
|
|
|
|
"网上搜索:t分布临界值表\n",
|
|
|
|
|
|
|
|
"<img src=\"assets/20201116212408.png\" width=\"70%\">"
|
|
|
|
|
|
|
|
]
|
|
|
|
|
|
|
|
},
|
|
|
|
|
|
|
|
{
|
|
|
|
|
|
|
|
"cell_type": "markdown",
|
|
|
|
|
|
|
|
"metadata": {},
|
|
|
|
|
|
|
|
"source": [
|
|
|
|
|
|
|
|
"### 配对样本均数t检验\n",
|
|
|
|
|
|
|
|
"<ul>\n",
|
|
|
|
|
|
|
|
"<li>简称配对t检验( paired t test),又称非独立俩样木均数t检验,适用于配对设计计量资料均数的比较\n",
|
|
|
|
|
|
|
|
" <li>配对设计( paired design)是将受试对象按某些特征相近的原则配成对子,每对中的两个个体随机地给予两种处理"
|
|
|
|
|
|
|
|
]
|
|
|
|
|
|
|
|
},
|
|
|
|
|
|
|
|
{
|
|
|
|
|
|
|
|
"cell_type": "markdown",
|
|
|
|
|
|
|
|
"metadata": {},
|
|
|
|
|
|
|
|
"source": [
|
|
|
|
|
|
|
|
"#### 配对样本均数t检验原理\n",
|
|
|
|
|
|
|
|
"<ul>\n",
|
|
|
|
|
|
|
|
"<li>配对设计的资料具有对子内数据一一对应的特征,研究者应关心是对子的效应差值而不是各自的效应值。\n",
|
|
|
|
|
|
|
|
"<li>进行配对t检验时,首选应计算各对数据间的差值d,将d作为变量计算均数。\n",
|
|
|
|
|
|
|
|
"<li>配对样本t检验的基本原理是假设两种处理的效应相同,理论上差值d的总体均数μd为0,现有的不等于0差值样本均数可以来自μd=0的总体,也可以来ud≠0的总体。\n",
|
|
|
|
|
|
|
|
"<li>可将该检验理解为差值样本均数与已知总体均数μd(pd=0)比较的单样本t检验,其检验统计量"
|
|
|
|
|
|
|
|
]
|
|
|
|
|
|
|
|
},
|
|
|
|
|
|
|
|
{
|
|
|
|
|
|
|
|
"cell_type": "markdown",
|
|
|
|
|
|
|
|
"metadata": {},
|
|
|
|
|
|
|
|
"source": [
|
|
|
|
|
|
|
|
"$$\n",
|
|
|
|
|
|
|
|
"t = \\frac{\\overline{d} - μ_d}{S_{\\overline{d}}}\n",
|
|
|
|
|
|
|
|
"= \\frac{\\overline{d} - 0}{S_{\\overline{d}}}\n",
|
|
|
|
|
|
|
|
"= \\frac{\\overline{d}}{S_d/\\sqrt{n}}\n",
|
|
|
|
|
|
|
|
"$$"
|
|
|
|
|
|
|
|
]
|
|
|
|
|
|
|
|
},
|
|
|
|
|
|
|
|
{
|
|
|
|
|
|
|
|
"cell_type": "markdown",
|
|
|
|
|
|
|
|
"metadata": {},
|
|
|
|
|
|
|
|
"source": [
|
|
|
|
|
|
|
|
"## T检验实例"
|
|
|
|
|
|
|
|
]
|
|
|
|
|
|
|
|
},
|
|
|
|
{
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": null,
|
|
|
|
"execution_count": null,
|
|
|
|