Add T检验实例

pull/2/head
benjas 5 years ago
parent deb3ebb470
commit bb3508921f

@ -351,7 +351,6 @@
] ]
}, },
{ {
"attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
@ -379,7 +378,6 @@
] ]
}, },
{ {
"attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
@ -429,6 +427,197 @@
" <li>应用条件,总体标准α未知的小样本资料,且服从正态分布。" " <li>应用条件,总体标准α未知的小样本资料,且服从正态分布。"
] ]
}, },
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### 实例\n",
"以往通过大规模调査已知某地新生儿出生体重为3.30kg。从该地难产儿中随机抽取35名新生儿,平均出生体重为3.42kg,标准差为0.40kg,问该地难产儿出生体重是否与一般新生儿体重不同?"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"建立检验假设,确定检验水准\n",
"H0 μ=μ0H1μ≠μ0α=0.05\n",
"<br>\n",
"计算检验统计量\n",
"$$\n",
"t = \\frac{\\overline{X} - μ_0}{S_{\\overline{x}}}\n",
"= \\frac{\\overline{X}-μ_0}{S/\\sqrt{n}}\n",
"= \\frac{3.42-3.30}{0.40/\\sqrt{35}}\n",
"= 1.77\n",
"$$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"本例自由度v=n-1=35-1=34,查表得得t0.052/34=2.032。因为t<t0.052/34故P>0.05,按α=0.05水准不拒绝H0差别无统计学意义尚不能认为该地难产;\n",
"<br>自由度:可以随意变换的个数是多少"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"网上搜索t分布临界值表\n",
"<img src=\"assets/20201116212408.png\" width=\"70%\">"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 配对样本均数t检验\n",
"<ul>\n",
"<li>简称配对t检验( paired t test)又称非独立俩样木均数t检验适用于配对设计计量资料均数的比较\n",
" <li>配对设计( paired design)是将受试对象按某些特征相近的原则配成对子,每对中的两个个体随机地给予两种处理"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### 配对样本均数t检验原理\n",
"<ul>\n",
"<li>配对设计的资料具有对子内数据一一对应的特征,研究者应关心是对子的效应差值而不是各自的效应值。\n",
"<li>进行配对t检验时首选应计算各对数据间的差值d将d作为变量计算均数。\n",
"<li>配对样本t检验的基本原理是假设两种处理的效应相同理论上差值d的总体均数μd为0现有的不等于0差值样本均数可以来自μd=0的总体也可以来ud≠0的总体。\n",
"<li>可将该检验理解为差值样本均数与已知总体均数μd(pd=0)比较的单样本t检验,其检验统计量"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"$$\n",
"t = \\frac{\\overline{d} - μ_d}{S_{\\overline{d}}}\n",
"= \\frac{\\overline{d} - 0}{S_{\\overline{d}}}\n",
"= \\frac{\\overline{d}}{S_d/\\sqrt{n}}\n",
"$$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## T检验实例"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**实例1**\n",
"<br>\n",
"有12名接种卡介苗的儿童8周虐用两批不同的结核菌素一批是标准结核菌素一批是新制结核菌素分别注射在儿童的前臂两种结核菌素的皮肤浸润反应平均直径(mm)如表所示,问两种结核菌素的反应性有无差别。\n",
"<img src=\"assets/20201116215635.png\" width=\"70%\">"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"建立检验假设,确定检验水准\n",
"<br>H0:μd = 0\n",
"<br>H1μd ≠ 0\n",
"<br>α = 0.05\n",
"<br>计算检验统计量本例\n",
"$$\n",
"\\sum d = 39, \\sum d^2 = 195\n",
"$$\n",
"<br>先计算差数的标准差\n",
"$$\n",
"S_d = \\sqrt{\\frac{\\sum d^2 - \\frac{(\\sum d)^2}{n}}{n-1}}\n",
"= \\sqrt{\\frac{195-\\frac{(39)^2}{12}}{12-1}}\n",
"= 2.4909\n",
"$$\n",
"<br>计算差值的标准误\n",
"$$\n",
"S_{\\overline{d}} = \\frac{S_d}{\\sqrt{n}}\n",
"= \\frac{2.4909}{3.464}\n",
"= 0.7191\n",
"$$\n",
"<br> 按公式计算,得\n",
"$$\n",
"t = \\frac{\\overline{d}}{S_{\\overline{d}}}\n",
"= \\frac{3.25}{0.7191}\n",
"= 4.5195\n",
"$$\n",
"确定P值作出推断结论\n",
"<br>自由度计算为 v=n-1=12-1=11,\n",
"<br>查附表得t0.05/2.11 = 2.201,\n",
"<br>本例t > t0.05/2.11\n",
"<br>P < 0.05拒绝H0接受H1反应结果有差别。"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 两独立样本t检验\n",
"<ul>\n",
"<li>两独立样本t检验(two independent sample t-test)又称成组t检验。\n",
"<li>适用于完全随机设计的两样本均数的比较,其目的是检验两样本所来自总体的均数是否相等。\n",
"<li>完全随机设计是将受试对象随机地分配到两组中,每组患者分别接受不同的处理,分析比较处理的效应,\n",
"<li>两独立样本t检验要求两样本所代表的总体服从正态分布N(μ1,σ42)和N(μ2,σ2)且两总体方差σ1^2、σ2^2相等即方差齐性。若两总体方差不等需要先进行变换。"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 两独立样木t检验原理\n",
"两独立样本t检验的检验假设是两总体均数相等即H0:u1=2也可表述为u1-μ2=0这里可将两样本均数的差值看成一个变量样本则在H0条件下两独立样本均数t检验可视为样本与已知总体均数μ1-μ2=0的单样本t检验统计量计算公式为\n",
"$$\n",
"t = \\frac{|(\\overline{X}_1 - \\overline{X}_2|) - (μ_1 - μ_2)}{S_{\\overline{X}_1-\\overline{X}_2}}, v=n_1+n_2-2\n",
"$$\n",
"$$\n",
"S_{\\overline{X}_1-\\overline{X}_2} = \\sqrt{S_c^2(\\frac{1}{n_1}+\\frac{1}{n_2})}\n",
"$$\n",
"$$\n",
"S_c^2 = \\frac{\\sum X^2_1 - \\frac{(\\sum X_t)^2}{n_1}+\\sum X_2^2 - \\frac{(\\sum X_2)^2}{n_2}}{n_1+n_2-2}\n",
"$$\n",
"$$\n",
"S_c^2称为合并方差(combined/pooled variance)\n",
"$$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**实例2**\n",
"<br>\n",
"25例糖尿病患者随机分成两组甲组单纯用药物治疗乙组采用药物治疗合并饮食疗法二个月后测空腹血糖(mmoL)如表所示,问两种疗法治疗后患者血糖值是否相同?\n",
"<img src=\"assets/20201116221815.png\" width=\"70%\">"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"建立检验假设,确定检验水准\n",
"<br>H0μ1=μ2H1μ1≠μ2α=0.05\n",
"<br>计算检验统计量\n",
"$$\n",
"由原数据算得: n_1=12, \\sum X_1=182.5,\\sum X_1^2=2953.43,n_2=13,\\sum X_2=141.0,\n",
"\\sum X_2^2=1743.16, \\overline{X}_1=\\sum X_1/n_1=182.5/12=15.21, \n",
"\\overline{X}_2/n_2=14.16/13=10.85\n",
"$$\n",
"$$\n",
"代入公式,得\n",
"S_c^2 = \\frac{2953.43 - \\frac{(182.5)^2}{12}+1743.16-\\frac{(141.0)^2}{13}}{12+13-2} = 17.03\n",
"$$\n",
"$$\n",
"S_{\\overline{X}_1-\\overline{X}_2} = \\sqrt{17.03(\\frac{1}{12}+\\frac{1}{13})}\n",
"=1.652\n",
"$$"
]
},
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,

Binary file not shown.

After

Width:  |  Height:  |  Size: 125 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 65 KiB

@ -455,7 +455,7 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"本例自由度v=n-1=35-1=34,查表得得t0.052/34=2.032。因为t<t0.052/34,故P>0.05,按α=0.05水准不拒绝H0差别无统计学意义尚不能认为该地难产;\n", "本例自由度v=n-1=35-1=34,查表得得t0.052/34=2.032。因为t<t0.052/34故P>0.05按α=0.05水准不拒绝H0差别无统计学意义尚不能认为该地难产;\n",
"<br>自由度:可以随意变换的个数是多少" "<br>自由度:可以随意变换的个数是多少"
] ]
}, },
@ -507,6 +507,117 @@
"## T检验实例" "## T检验实例"
] ]
}, },
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**实例1**\n",
"<br>\n",
"有12名接种卡介苗的儿童8周虐用两批不同的结核菌素一批是标准结核菌素一批是新制结核菌素分别注射在儿童的前臂两种结核菌素的皮肤浸润反应平均直径(mm)如表所示,问两种结核菌素的反应性有无差别。\n",
"<img src=\"assets/20201116215635.png\" width=\"70%\">"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"建立检验假设,确定检验水准\n",
"<br>H0:μd = 0\n",
"<br>H1μd ≠ 0\n",
"<br>α = 0.05\n",
"<br>计算检验统计量本例\n",
"$$\n",
"\\sum d = 39, \\sum d^2 = 195\n",
"$$\n",
"<br>先计算差数的标准差\n",
"$$\n",
"S_d = \\sqrt{\\frac{\\sum d^2 - \\frac{(\\sum d)^2}{n}}{n-1}}\n",
"= \\sqrt{\\frac{195-\\frac{(39)^2}{12}}{12-1}}\n",
"= 2.4909\n",
"$$\n",
"<br>计算差值的标准误\n",
"$$\n",
"S_{\\overline{d}} = \\frac{S_d}{\\sqrt{n}}\n",
"= \\frac{2.4909}{3.464}\n",
"= 0.7191\n",
"$$\n",
"<br> 按公式计算,得\n",
"$$\n",
"t = \\frac{\\overline{d}}{S_{\\overline{d}}}\n",
"= \\frac{3.25}{0.7191}\n",
"= 4.5195\n",
"$$\n",
"确定P值作出推断结论\n",
"<br>自由度计算为 v=n-1=12-1=11,\n",
"<br>查附表得t0.05/2.11 = 2.201,\n",
"<br>本例t > t0.05/2.11\n",
"<br>P < 0.05拒绝H0接受H1反应结果有差别。"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 两独立样本t检验\n",
"<ul>\n",
"<li>两独立样本t检验(two independent sample t-test)又称成组t检验。\n",
"<li>适用于完全随机设计的两样本均数的比较,其目的是检验两样本所来自总体的均数是否相等。\n",
"<li>完全随机设计是将受试对象随机地分配到两组中,每组患者分别接受不同的处理,分析比较处理的效应,\n",
"<li>两独立样本t检验要求两样本所代表的总体服从正态分布N(μ1,σ42)和N(μ2,σ2)且两总体方差σ1^2、σ2^2相等即方差齐性。若两总体方差不等需要先进行变换。"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 两独立样木t检验原理\n",
"两独立样本t检验的检验假设是两总体均数相等即H0:u1=2也可表述为u1-μ2=0这里可将两样本均数的差值看成一个变量样本则在H0条件下两独立样本均数t检验可视为样本与已知总体均数μ1-μ2=0的单样本t检验统计量计算公式为\n",
"$$\n",
"t = \\frac{|(\\overline{X}_1 - \\overline{X}_2|) - (μ_1 - μ_2)}{S_{\\overline{X}_1-\\overline{X}_2}}, v=n_1+n_2-2\n",
"$$\n",
"$$\n",
"S_{\\overline{X}_1-\\overline{X}_2} = \\sqrt{S_c^2(\\frac{1}{n_1}+\\frac{1}{n_2})}\n",
"$$\n",
"$$\n",
"S_c^2 = \\frac{\\sum X^2_1 - \\frac{(\\sum X_t)^2}{n_1}+\\sum X_2^2 - \\frac{(\\sum X_2)^2}{n_2}}{n_1+n_2-2}\n",
"$$\n",
"$$\n",
"S_c^2称为合并方差(combined/pooled variance)\n",
"$$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**实例2**\n",
"<br>\n",
"25例糖尿病患者随机分成两组甲组单纯用药物治疗乙组采用药物治疗合并饮食疗法二个月后测空腹血糖(mmoL)如表所示,问两种疗法治疗后患者血糖值是否相同?\n",
"<img src=\"assets/20201116221815.png\" width=\"70%\">"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"建立检验假设,确定检验水准\n",
"<br>H0μ1=μ2H1μ1≠μ2α=0.05\n",
"<br>计算检验统计量\n",
"$$\n",
"由原数据算得: n_1=12, \\sum X_1=182.5,\\sum X_1^2=2953.43,n_2=13,\\sum X_2=141.0,\n",
"\\sum X_2^2=1743.16, \\overline{X}_1=\\sum X_1/n_1=182.5/12=15.21, \n",
"\\overline{X}_2/n_2=14.16/13=10.85\n",
"$$\n",
"$$\n",
"代入公式,得\n",
"S_c^2 = \\frac{2953.43 - \\frac{(182.5)^2}{12}+1743.16-\\frac{(141.0)^2}{13}}{12+13-2} = 17.03\n",
"$$\n",
"$$\n",
"S_{\\overline{X}_1-\\overline{X}_2} = \\sqrt{17.03(\\frac{1}{12}+\\frac{1}{13})}\n",
"=1.652\n",
"$$"
]
},
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,

Loading…
Cancel
Save