|
|
|
@ -80,7 +80,7 @@
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 14,
|
|
|
|
|
"execution_count": 1,
|
|
|
|
|
"id": "ceef72c3",
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [
|
|
|
|
@ -142,7 +142,7 @@
|
|
|
|
|
"4 0"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
"execution_count": 14,
|
|
|
|
|
"execution_count": 1,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"output_type": "execute_result"
|
|
|
|
|
}
|
|
|
|
@ -165,7 +165,7 @@
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 21,
|
|
|
|
|
"execution_count": 2,
|
|
|
|
|
"id": "fcd6f4e3",
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [
|
|
|
|
@ -195,7 +195,7 @@
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 22,
|
|
|
|
|
"execution_count": 3,
|
|
|
|
|
"id": "a40af2b8",
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [
|
|
|
|
@ -231,7 +231,7 @@
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 23,
|
|
|
|
|
"execution_count": 4,
|
|
|
|
|
"id": "03948c52",
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
@ -241,10 +241,58 @@
|
|
|
|
|
" if df[col].dtype=='int64': df[col] = df[col].astype('int32')"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "markdown",
|
|
|
|
|
"id": "f81f2de6",
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"source": [
|
|
|
|
|
"## 分类特征\n",
|
|
|
|
|
"对于分类变量,可以选择告诉 LGBM 它们是分类的(但内存会增加),或者可以告诉 LGBM 将其视为数字(首先需要对其进行标签编码)"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 10,
|
|
|
|
|
"id": "bf7c9e8a",
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [
|
|
|
|
|
{
|
|
|
|
|
"name": "stdout",
|
|
|
|
|
"output_type": "stream",
|
|
|
|
|
"text": [
|
|
|
|
|
"<class 'pandas.core.frame.DataFrame'>\n",
|
|
|
|
|
"RangeIndex: 5 entries, 0 to 4\n",
|
|
|
|
|
"Data columns (total 1 columns):\n",
|
|
|
|
|
" # Column Non-Null Count Dtype \n",
|
|
|
|
|
"--- ------ -------------- ----- \n",
|
|
|
|
|
" 0 color 5 non-null category\n",
|
|
|
|
|
"dtypes: category(1)\n",
|
|
|
|
|
"memory usage: 265.0 bytes\n"
|
|
|
|
|
]
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
|
|
|
|
"df = pd.DataFrame(['green','bule','red','bule','green'],columns=['color'])\n",
|
|
|
|
|
"df['color'],_ = df['color'].factorize()\n",
|
|
|
|
|
"df['color'] = df['color'].astype('category') # 转成分类特征并查看内存使用情况(已知int8内存使用是: 133.0 bytes)\n",
|
|
|
|
|
"df.info()"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "markdown",
|
|
|
|
|
"id": "3412c82b",
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"source": [
|
|
|
|
|
"## Splitting\n",
|
|
|
|
|
"可以通过拆分将单个(字符串或数字)列分成两列。\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"例如,id_30诸如\"Mac OS X 10_9_5\"之类的字符串列可以拆分为操作系统\"Mac OS X\"和版本\"10_9_5\"。或者例如数字\"1230.45\"可以拆分为元\" 1230\"和分\"45\"。LGBM 无法单独看到这些片段,需要将它们拆分。"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": null,
|
|
|
|
|
"id": "bb624a66",
|
|
|
|
|
"id": "e78b77c4",
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": []
|
|
|
|
|