|
|
|
@ -2,7 +2,7 @@
|
|
|
|
|
"cells": [
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "markdown",
|
|
|
|
|
"id": "278c7a1e",
|
|
|
|
|
"id": "8d942947",
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"source": [
|
|
|
|
|
"# 特征工程技术"
|
|
|
|
@ -10,7 +10,7 @@
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "markdown",
|
|
|
|
|
"id": "67f256b4",
|
|
|
|
|
"id": "d08d515b",
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"source": [
|
|
|
|
|
"搬运参考:https://www.kaggle.com/c/ieee-fraud-detection/discussion/108575"
|
|
|
|
@ -18,7 +18,7 @@
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "markdown",
|
|
|
|
|
"id": "5a28bcf6",
|
|
|
|
|
"id": "5eb53e03",
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"source": [
|
|
|
|
|
"## 关于编码\n",
|
|
|
|
@ -28,7 +28,7 @@
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": null,
|
|
|
|
|
"id": "c0edffa6",
|
|
|
|
|
"id": "eb00d32d",
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
|
|
|
@ -40,7 +40,7 @@
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "markdown",
|
|
|
|
|
"id": "3bd8a464",
|
|
|
|
|
"id": "83412ecb",
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"source": [
|
|
|
|
|
"## NAN值加工\n",
|
|
|
|
@ -54,7 +54,7 @@
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": null,
|
|
|
|
|
"id": "e2c552c7",
|
|
|
|
|
"id": "8b093d6f",
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
|
|
|
@ -63,7 +63,7 @@
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "markdown",
|
|
|
|
|
"id": "fe85c377",
|
|
|
|
|
"id": "978c9dc6",
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"source": [
|
|
|
|
|
"这样LGBM将不再过度处理 NAN。相反,它会给予它与其他数字相同的关注。可以尝试两种方法,看看哪个给出了最高的CV。"
|
|
|
|
@ -71,7 +71,7 @@
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "markdown",
|
|
|
|
|
"id": "05e77c5a",
|
|
|
|
|
"id": "31c076fc",
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"source": [
|
|
|
|
|
"## 标签编码/因式分解/内存减少\n",
|
|
|
|
@ -80,8 +80,8 @@
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 14,
|
|
|
|
|
"id": "554159aa",
|
|
|
|
|
"execution_count": 1,
|
|
|
|
|
"id": "ceef72c3",
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [
|
|
|
|
|
{
|
|
|
|
@ -142,7 +142,7 @@
|
|
|
|
|
"4 0"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
"execution_count": 14,
|
|
|
|
|
"execution_count": 1,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"output_type": "execute_result"
|
|
|
|
|
}
|
|
|
|
@ -157,7 +157,7 @@
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "markdown",
|
|
|
|
|
"id": "e5bf12a9",
|
|
|
|
|
"id": "eca60e6f",
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"source": [
|
|
|
|
|
"之后,可以将其转换为 int8、int16 或 int32用以减少内存,具体取决于 max 是否小于 128、小于 32768。"
|
|
|
|
@ -165,8 +165,8 @@
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 21,
|
|
|
|
|
"id": "863fee6f",
|
|
|
|
|
"execution_count": 2,
|
|
|
|
|
"id": "fcd6f4e3",
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [
|
|
|
|
|
{
|
|
|
|
@ -195,8 +195,8 @@
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 22,
|
|
|
|
|
"id": "1a6bac81",
|
|
|
|
|
"execution_count": 3,
|
|
|
|
|
"id": "a40af2b8",
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [
|
|
|
|
|
{
|
|
|
|
@ -221,7 +221,7 @@
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "markdown",
|
|
|
|
|
"id": "0951f3c7",
|
|
|
|
|
"id": "3728adee",
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"source": [
|
|
|
|
|
"另外为了减少内存,人们memory_reduce在其他列上使用流行的功能。\n",
|
|
|
|
@ -231,8 +231,8 @@
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 23,
|
|
|
|
|
"id": "88368fc6",
|
|
|
|
|
"execution_count": 4,
|
|
|
|
|
"id": "03948c52",
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
|
|
|
@ -241,10 +241,47 @@
|
|
|
|
|
" if df[col].dtype=='int64': df[col] = df[col].astype('int32')"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "markdown",
|
|
|
|
|
"id": "f1d175ca",
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"source": [
|
|
|
|
|
"## 分类特征\n",
|
|
|
|
|
"对于分类变量,可以选择告诉 LGBM 它们是分类的(但内存会增加),或者可以告诉 LGBM 将其视为数字(首先需要对其进行标签编码)"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 10,
|
|
|
|
|
"id": "333baf5e",
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [
|
|
|
|
|
{
|
|
|
|
|
"name": "stdout",
|
|
|
|
|
"output_type": "stream",
|
|
|
|
|
"text": [
|
|
|
|
|
"<class 'pandas.core.frame.DataFrame'>\n",
|
|
|
|
|
"RangeIndex: 5 entries, 0 to 4\n",
|
|
|
|
|
"Data columns (total 1 columns):\n",
|
|
|
|
|
" # Column Non-Null Count Dtype \n",
|
|
|
|
|
"--- ------ -------------- ----- \n",
|
|
|
|
|
" 0 color 5 non-null category\n",
|
|
|
|
|
"dtypes: category(1)\n",
|
|
|
|
|
"memory usage: 265.0 bytes\n"
|
|
|
|
|
]
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
|
|
|
|
"df = pd.DataFrame(['green','bule','red','bule','green'],columns=['color'])\n",
|
|
|
|
|
"df['color'],_ = df['color'].factorize()\n",
|
|
|
|
|
"df['color'] = df['color'].astype('category') # 转成分类特征并查看内存使用情况(已知int8内存使用是: 133.0 bytes)\n",
|
|
|
|
|
"df.info()"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": null,
|
|
|
|
|
"id": "1ecd48ce",
|
|
|
|
|
"id": "28f791bd",
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": []
|
|
|
|
|