|
|
@ -168,9 +168,11 @@ $$
|
|
|
|
|
|
|
|
|
|
|
|
**以直代曲**:
|
|
|
|
**以直代曲**:
|
|
|
|
|
|
|
|
|
|
|
|
对于矩形,我们可以轻松求得其面积,能否用矩形代替曲线形状呢?
|
|
|
|
- 对于矩形,我们可以轻松求得其面积,能否用矩形代替曲线形状呢?
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- 应该用多少个矩形来代替?
|
|
|
|
|
|
|
|
|
|
|
|
应该用多少个矩形来代替?
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
@ -198,15 +200,21 @@ $$
|
|
|
|
|
|
|
|
|
|
|
|
> 注意每个小区间的最大长度为λ,而λ无限接近于0时,那么曲边的面积我们就可以得出,当然这里的近似表达是极限,无限接近的极限。
|
|
|
|
> 注意每个小区间的最大长度为λ,而λ无限接近于0时,那么曲边的面积我们就可以得出,当然这里的近似表达是极限,无限接近的极限。
|
|
|
|
|
|
|
|
|
|
|
|
求和
|
|
|
|
**求和**:
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
我们需要尽可能的将每一个矩形的底边无穷小
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
莱布尼茨为了体现求和的感觉,把S拉长了,简写成\int f(x)dx \quad Sum(f(x)\Delta x) => \int_{um}f(x)dx
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
> 将上面的所有矩阵求和,∫ = sum,求和的意思
|
|
|
|
> 将上面的所有矩阵求和,∫ = sum,求和的意思
|
|
|
|
|
|
|
|
|
|
|
|
**定积分**:
|
|
|
|
**定积分**:
|
|
|
|
|
|
|
|
$$
|
|
|
|

|
|
|
|
当||\Delta x||→0时,总和S总数趋于确定的极限l,则称极限l为函数f(x)在曲线[a,b]上的定积分
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -216,21 +224,77 @@ $$
|
|
|
|
|
|
|
|
|
|
|
|
> 拿到数据后,数据就长如下样子,有行有列
|
|
|
|
> 拿到数据后,数据就长如下样子,有行有列
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
> 左图√表示A可以到B和C,如右上图,再把√号改成0/1以存储在数据里面,就如右下图
|
|
|
|
> 左图√表示A可以到B和C,如右上图,再把√号改成0/1以存储在数据里面,就如右下图
|
|
|
|
|
|
|
|
|
|
|
|
**几种特别的矩阵**:
|
|
|
|
**几种特别的矩阵**:
|
|
|
|
|
|
|
|
$$
|
|
|
|

|
|
|
|
上三角矩阵
|
|
|
|
|
|
|
|
\left[
|
|
|
|
|
|
|
|
\matrix{
|
|
|
|
|
|
|
|
a_{11} & a_{12} & ... &a_{1n}\\
|
|
|
|
|
|
|
|
0 & a_{22} & ... &a_{2n}\\
|
|
|
|
|
|
|
|
⋮ & ⋮ &⋮&⋮\\
|
|
|
|
|
|
|
|
0 & 0 & ... &a_{nm}\\
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
\right]
|
|
|
|
|
|
|
|
\quad 下三角矩阵
|
|
|
|
|
|
|
|
\left[
|
|
|
|
|
|
|
|
\matrix{
|
|
|
|
|
|
|
|
a_{11} & 0 & ...& 0\\
|
|
|
|
|
|
|
|
a_{21} & a_{22} & ... &0\\
|
|
|
|
|
|
|
|
⋮ & ⋮ & ⋮ & ⋮ \\
|
|
|
|
|
|
|
|
a_{n1} & a_{n2} & ... &a_{nm}\\
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
\right]
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
|
|
> 上三角部分有值,和下三角部分有值
|
|
|
|
> 上三角部分有值,和下三角部分有值
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
$$
|
|
|
|
|
|
|
|
对角阵
|
|
|
|
|
|
|
|
\left[
|
|
|
|
|
|
|
|
\matrix{
|
|
|
|
|
|
|
|
\lambda_1 & 0 & ... &0\\
|
|
|
|
|
|
|
|
0 & \lambda_2 & ... &0\\
|
|
|
|
|
|
|
|
⋮ & ⋮ & &⋮\\
|
|
|
|
|
|
|
|
0 & 0 & ... &\lambda_n\\
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
\right]
|
|
|
|
|
|
|
|
\quad 单位矩阵
|
|
|
|
|
|
|
|
\left[
|
|
|
|
|
|
|
|
\matrix{
|
|
|
|
|
|
|
|
1 & 0 & ...& 0\\
|
|
|
|
|
|
|
|
0 & 1 & ... &0\\
|
|
|
|
|
|
|
|
⋮ & ⋮ & ⋮ & ⋮ \\
|
|
|
|
|
|
|
|
0 & 0 & ... &1\\
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
\right]
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
|
|
> 对角阵:对角有值且可以是任意值,单位矩阵:对角有值且相同
|
|
|
|
> 对角阵:对角有值且可以是任意值,单位矩阵:对角有值且相同
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
$$
|
|
|
|
|
|
|
|
两个矩阵行列数相同的时候称为同型矩阵
|
|
|
|
|
|
|
|
\left[
|
|
|
|
|
|
|
|
\matrix{
|
|
|
|
|
|
|
|
1 & 2\\
|
|
|
|
|
|
|
|
6 & 7\\
|
|
|
|
|
|
|
|
4 & 3
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
\right]
|
|
|
|
|
|
|
|
与
|
|
|
|
|
|
|
|
\left[
|
|
|
|
|
|
|
|
\matrix{
|
|
|
|
|
|
|
|
12 & 2\\
|
|
|
|
|
|
|
|
9 & 1\\
|
|
|
|
|
|
|
|
10 & 6
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
\right]
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
|
|
> 同型矩阵:行列相同。矩阵相等:行列相同且里面的值一样
|
|
|
|
> 同型矩阵:行列相同。矩阵相等:行列相同且里面的值一样
|
|
|
|
|
|
|
|
|
|
|
@ -261,11 +325,30 @@ $$
|
|
|
|
|
|
|
|
|
|
|
|
**离散型随机变量概率分布**
|
|
|
|
**离散型随机变量概率分布**
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
- 找到离散型随机变量X的所有可能取值
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- 得到离散型随机变量取这些值的概率
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
f(x_i)=P(X=x_i)为离散型随机变量的概率函数
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
**连续型随机变量概率分布**
|
|
|
|
**连续型随机变量概率分布**
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
- 密度:一个物体,如果问其中一个点的质量是多少?这该怎么求?
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
由于这个点实在太小了,那么质量就为0了,但是其中的一大块是由
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
很多个点组成的,这时我们就可以根据密度来求其质量了
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- X为连续随机变量,X在任意区间(a,b]上的概率可以表示为:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
P(a<X\leq b)=\int_a^bf(x)dx
|
|
|
|
|
|
|
|
\quad 其中f(x)就叫做X的概率密度函数,也可以简单叫做密度
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
|
|
> 还有一种方法是把每个值划分在不同区间,变成离散型,但如果有新数据进来就要再划分区间导致区间越来越多。
|
|
|
|
> 还有一种方法是把每个值划分在不同区间,变成离散型,但如果有新数据进来就要再划分区间导致区间越来越多。
|
|
|
|
|
|
|
|
|
|
|
@ -276,13 +359,39 @@ $$
|
|
|
|
1. 样本X1,X2...Xn是相互独立的随机变量。
|
|
|
|
1. 样本X1,X2...Xn是相互独立的随机变量。
|
|
|
|
2. 样本X1,X2...Xn与总体X同分布。
|
|
|
|
2. 样本X1,X2...Xn与总体X同分布。
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
$$
|
|
|
|
|
|
|
|
联合分布函数:F(x_1,x_2,...,x_n)=\prod_{i=1}^nF(x_i)
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
联合概率密度:f(x_1,x_2,...,x_n)=\prod_{i=1}^nf(x_i)
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
|
|
### 极大似然估计
|
|
|
|
### 极大似然估计
|
|
|
|
|
|
|
|
|
|
|
|
> 找到最有可能的那个
|
|
|
|
> 找到最有可能的那个
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
1. $$
|
|
|
|
|
|
|
|
构造似然函数:L(\theta)
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2. $$
|
|
|
|
|
|
|
|
对似然函数取对数:lnL(\theta)
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3. $$
|
|
|
|
|
|
|
|
求偏导:\frac {dlnL}{d\theta}=0
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4. $$
|
|
|
|
|
|
|
|
求解得到\theta值
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
> 第一步构造函数;第二步取对数,对数后的值容易取且极值点还是那个位置;第三步求偏导;得到θ
|
|
|
|
> 第一步构造函数;第二步取对数,对数后的值容易取且极值点还是那个位置;第三步求偏导;得到θ
|
|
|
|
|
|
|
|
|
|
|
|