|
|
|
@ -122,7 +122,7 @@
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
|
|
|
|
"df = pd.read_csv('new_gy_contest_traveltime_training_data_second.txt',delimiter=';',dtype={'link_ID':object})\n",
|
|
|
|
|
"df = pd.read_csv('data/new_gy_contest_traveltime_training_data_second.txt',delimiter=';',dtype={'link_ID':object})\n",
|
|
|
|
|
"df.head()"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
@ -229,7 +229,7 @@
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
|
|
|
|
"link_df = pd.read_csv('gy_contest_link_info.txt',delimiter=';',dtype={'link_ID':object})\n",
|
|
|
|
|
"link_df = pd.read_csv('data/gy_contest_link_info.txt',delimiter=';',dtype={'link_ID':object})\n",
|
|
|
|
|
"link_df.head()"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
@ -328,7 +328,7 @@
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
|
|
|
|
"link_tops = pd.read_csv('gy_contest_link_top_update.txt',delimiter=',',dtype={'link_ID':object})\n",
|
|
|
|
|
"link_tops = pd.read_csv('data/gy_contest_link_top_update.txt',delimiter=',',dtype={'link_ID':object})\n",
|
|
|
|
|
"link_tops.head()"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
@ -702,7 +702,7 @@
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
|
|
|
|
"#保存处理结果\n",
|
|
|
|
|
"df.to_csv('raw_data.txt',header=True,index=None,sep=';',mode='w')"
|
|
|
|
|
"df.to_csv('data/raw_data.txt',header=True,index=None,sep=';',mode='w')"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
@ -799,7 +799,7 @@
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
|
|
|
|
"df = pd.read_csv('raw_data.txt',delimiter=';',parse_dates=['time_interval_begin'],dtype={'link_ID':object})\n",
|
|
|
|
|
"df = pd.read_csv('data/raw_data.txt',delimiter=';',parse_dates=['time_interval_begin'],dtype={'link_ID':object})\n",
|
|
|
|
|
"df.head()"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
@ -1213,7 +1213,7 @@
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
|
|
|
|
"#保存中间结果\n",
|
|
|
|
|
"df2.to_csv('pre_trainning.txt',header=True,index=None,sep=';',mode='w')"
|
|
|
|
|
"df2.to_csv('data/pre_trainning.txt',header=True,index=None,sep=';',mode='w')"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
@ -2156,8 +2156,8 @@
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
|
|
|
|
"link_infos = pd.read_csv('gy_contest_link_info.txt',delimiter=';',dtype={'link_ID':object})\n",
|
|
|
|
|
"link_tops = pd.read_csv('gy_contest_link_top_update.txt',delimiter=',',dtype={'link_ID':object})"
|
|
|
|
|
"link_infos = pd.read_csv('data/gy_contest_link_info.txt',delimiter=';',dtype={'link_ID':object})\n",
|
|
|
|
|
"link_tops = pd.read_csv('data/gy_contest_link_top_update.txt',delimiter=',',dtype={'link_ID':object})"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
@ -3955,7 +3955,7 @@
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
|
|
|
|
"print(df[['travel_time','prediction', 'travel_time2']].describe())\n",
|
|
|
|
|
"df[['link_ID','date','time_interval_begin','travel_time','imputation1']].to_csv('com_trainning.txt',\n",
|
|
|
|
|
"df[['link_ID','date','time_interval_begin','travel_time','imputation1']].to_csv('data/com_trainning.txt',\n",
|
|
|
|
|
" header=True,\n",
|
|
|
|
|
" index=None,\n",
|
|
|
|
|
" sep=';',mode='w')"
|
|
|
|
@ -3974,7 +3974,7 @@
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
|
|
|
|
"df = pd.read_csv('com_trainning.txt',\n",
|
|
|
|
|
"df = pd.read_csv('data/com_trainning.txt',\n",
|
|
|
|
|
" delimiter=';',\n",
|
|
|
|
|
" parse_dates=['time_interval_begin'],\n",
|
|
|
|
|
" dtype={'link_ID':object})"
|
|
|
|
@ -4663,8 +4663,8 @@
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
|
|
|
|
"link_infos = pd.read_csv('gy_contest_link_info.txt',delimiter=';',dtype={'link_ID':object})\n",
|
|
|
|
|
"link_tops = pd.read_csv('gy_contest_link_top_update.txt',delimiter=',',dtype={'link_ID':object})"
|
|
|
|
|
"link_infos = pd.read_csv('data/gy_contest_link_info.txt',delimiter=';',dtype={'link_ID':object})\n",
|
|
|
|
|
"link_tops = pd.read_csv('data/gy_contest_link_top_update.txt',delimiter=',',dtype={'link_ID':object})"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
@ -5733,7 +5733,7 @@
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
|
|
|
|
"df2.to_csv('trainning.txt',header=True,index=None,sep=';',mode='w')"
|
|
|
|
|
"df2.to_csv('data/trainning.txt',header=True,index=None,sep=';',mode='w')"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|