|
|
@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
{
|
|
|
|
|
|
|
|
"cells": [
|
|
|
|
|
|
|
|
{
|
|
|
|
|
|
|
|
"cell_type": "markdown",
|
|
|
|
|
|
|
|
"id": "c32f110a",
|
|
|
|
|
|
|
|
"metadata": {},
|
|
|
|
|
|
|
|
"source": [
|
|
|
|
|
|
|
|
"# 自动机器学习工具\n",
|
|
|
|
|
|
|
|
"该notebook将比较市面上的多个AutoML工具,分别采用两组数据集进行比较,分别是波士顿房价(回归)和森林植被类型(多分类)"
|
|
|
|
|
|
|
|
]
|
|
|
|
|
|
|
|
},
|
|
|
|
|
|
|
|
{
|
|
|
|
|
|
|
|
"cell_type": "markdown",
|
|
|
|
|
|
|
|
"id": "ba41b787",
|
|
|
|
|
|
|
|
"metadata": {},
|
|
|
|
|
|
|
|
"source": [
|
|
|
|
|
|
|
|
"# optuna一种超参数优化框架\n",
|
|
|
|
|
|
|
|
"https://github.com/optuna/optuna"
|
|
|
|
|
|
|
|
]
|
|
|
|
|
|
|
|
},
|
|
|
|
|
|
|
|
{
|
|
|
|
|
|
|
|
"cell_type": "markdown",
|
|
|
|
|
|
|
|
"id": "c4d7f73a",
|
|
|
|
|
|
|
|
"metadata": {},
|
|
|
|
|
|
|
|
"source": [
|
|
|
|
|
|
|
|
"### 波士顿房价预测任务(回归)"
|
|
|
|
|
|
|
|
]
|
|
|
|
|
|
|
|
},
|
|
|
|
|
|
|
|
{
|
|
|
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
|
|
|
"execution_count": null,
|
|
|
|
|
|
|
|
"id": "1d010375",
|
|
|
|
|
|
|
|
"metadata": {},
|
|
|
|
|
|
|
|
"outputs": [],
|
|
|
|
|
|
|
|
"source": [
|
|
|
|
|
|
|
|
"import numpy as np\n",
|
|
|
|
|
|
|
|
"import time\n",
|
|
|
|
|
|
|
|
"import gc"
|
|
|
|
|
|
|
|
]
|
|
|
|
|
|
|
|
},
|
|
|
|
|
|
|
|
{
|
|
|
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
|
|
|
"execution_count": 1,
|
|
|
|
|
|
|
|
"id": "6d01294d",
|
|
|
|
|
|
|
|
"metadata": {},
|
|
|
|
|
|
|
|
"outputs": [],
|
|
|
|
|
|
|
|
"source": [
|
|
|
|
|
|
|
|
"from sklearn.datasets import load_boston\n",
|
|
|
|
|
|
|
|
"# 预处理\n",
|
|
|
|
|
|
|
|
"X, y = data['data'], data['target']\n",
|
|
|
|
|
|
|
|
"# 由于模型标签需要从0开始,所以数字需要全部减1\n",
|
|
|
|
|
|
|
|
"print('七分类任务,处理前:',np.unique(y))\n",
|
|
|
|
|
|
|
|
"print(y)\n",
|
|
|
|
|
|
|
|
"ord = OrdinalEncoder()\n",
|
|
|
|
|
|
|
|
"y = ord.fit_transform(y.reshape(-1, 1))\n",
|
|
|
|
|
|
|
|
"y = y.reshape(-1, )\n",
|
|
|
|
|
|
|
|
"print('七分类任务,处理后:',np.unique(y))\n",
|
|
|
|
|
|
|
|
"print(y)"
|
|
|
|
|
|
|
|
]
|
|
|
|
|
|
|
|
},
|
|
|
|
|
|
|
|
{
|
|
|
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
|
|
|
"execution_count": 2,
|
|
|
|
|
|
|
|
"id": "80a90475",
|
|
|
|
|
|
|
|
"metadata": {},
|
|
|
|
|
|
|
|
"outputs": [
|
|
|
|
|
|
|
|
{
|
|
|
|
|
|
|
|
"data": {
|
|
|
|
|
|
|
|
"text/plain": [
|
|
|
|
|
|
|
|
"array([[6.3200e-03, 1.8000e+01, 2.3100e+00, ..., 1.5300e+01, 3.9690e+02,\n",
|
|
|
|
|
|
|
|
" 4.9800e+00],\n",
|
|
|
|
|
|
|
|
" [2.7310e-02, 0.0000e+00, 7.0700e+00, ..., 1.7800e+01, 3.9690e+02,\n",
|
|
|
|
|
|
|
|
" 9.1400e+00],\n",
|
|
|
|
|
|
|
|
" [2.7290e-02, 0.0000e+00, 7.0700e+00, ..., 1.7800e+01, 3.9283e+02,\n",
|
|
|
|
|
|
|
|
" 4.0300e+00],\n",
|
|
|
|
|
|
|
|
" ...,\n",
|
|
|
|
|
|
|
|
" [6.0760e-02, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9690e+02,\n",
|
|
|
|
|
|
|
|
" 5.6400e+00],\n",
|
|
|
|
|
|
|
|
" [1.0959e-01, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9345e+02,\n",
|
|
|
|
|
|
|
|
" 6.4800e+00],\n",
|
|
|
|
|
|
|
|
" [4.7410e-02, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9690e+02,\n",
|
|
|
|
|
|
|
|
" 7.8800e+00]])"
|
|
|
|
|
|
|
|
]
|
|
|
|
|
|
|
|
},
|
|
|
|
|
|
|
|
"execution_count": 2,
|
|
|
|
|
|
|
|
"metadata": {},
|
|
|
|
|
|
|
|
"output_type": "execute_result"
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
],
|
|
|
|
|
|
|
|
"source": [
|
|
|
|
|
|
|
|
"data.data"
|
|
|
|
|
|
|
|
]
|
|
|
|
|
|
|
|
},
|
|
|
|
|
|
|
|
{
|
|
|
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
|
|
|
"execution_count": null,
|
|
|
|
|
|
|
|
"id": "9977a37c",
|
|
|
|
|
|
|
|
"metadata": {},
|
|
|
|
|
|
|
|
"outputs": [],
|
|
|
|
|
|
|
|
"source": []
|
|
|
|
|
|
|
|
},
|
|
|
|
|
|
|
|
{
|
|
|
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
|
|
|
"execution_count": null,
|
|
|
|
|
|
|
|
"id": "e9193c33",
|
|
|
|
|
|
|
|
"metadata": {},
|
|
|
|
|
|
|
|
"outputs": [],
|
|
|
|
|
|
|
|
"source": [
|
|
|
|
|
|
|
|
"### 分类"
|
|
|
|
|
|
|
|
]
|
|
|
|
|
|
|
|
},
|
|
|
|
|
|
|
|
{
|
|
|
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
|
|
|
"execution_count": null,
|
|
|
|
|
|
|
|
"id": "82687da3",
|
|
|
|
|
|
|
|
"metadata": {},
|
|
|
|
|
|
|
|
"outputs": [],
|
|
|
|
|
|
|
|
"source": [
|
|
|
|
|
|
|
|
"from sklearn.datasets import fetch_covtype\n",
|
|
|
|
|
|
|
|
"data = fetch_covtype()"
|
|
|
|
|
|
|
|
]
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
],
|
|
|
|
|
|
|
|
"metadata": {
|
|
|
|
|
|
|
|
"kernelspec": {
|
|
|
|
|
|
|
|
"display_name": "Python 3",
|
|
|
|
|
|
|
|
"language": "python",
|
|
|
|
|
|
|
|
"name": "python3"
|
|
|
|
|
|
|
|
},
|
|
|
|
|
|
|
|
"language_info": {
|
|
|
|
|
|
|
|
"codemirror_mode": {
|
|
|
|
|
|
|
|
"name": "ipython",
|
|
|
|
|
|
|
|
"version": 3
|
|
|
|
|
|
|
|
},
|
|
|
|
|
|
|
|
"file_extension": ".py",
|
|
|
|
|
|
|
|
"mimetype": "text/x-python",
|
|
|
|
|
|
|
|
"name": "python",
|
|
|
|
|
|
|
|
"nbconvert_exporter": "python",
|
|
|
|
|
|
|
|
"pygments_lexer": "ipython3",
|
|
|
|
|
|
|
|
"version": "3.8.8"
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
},
|
|
|
|
|
|
|
|
"nbformat": 4,
|
|
|
|
|
|
|
|
"nbformat_minor": 5
|
|
|
|
|
|
|
|
}
|