diff --git a/src/leo/class19/LongestCommonSubsequence.java b/src/leo/class19/LongestCommonSubsequence.java index 51fb49f..350e4d7 100644 --- a/src/leo/class19/LongestCommonSubsequence.java +++ b/src/leo/class19/LongestCommonSubsequence.java @@ -66,6 +66,41 @@ public class LongestCommonSubsequence { } } + static class Recursion1 { + public static int longestCommonSubsequence(String s1, String s2) { + if (s1 == null || s2 == null || s1.length() == 0 || s2.length() == 0) { + return 0; + } + char[] c1 = s1.toCharArray(); + char[] c2 = s2.toCharArray(); + return process(c1, c2, c1.length - 1, c2.length - 1); + } + + private static int process(char[] c1, char[] c2, int i, int j) { + if (i == 0 && j == 0) { + return c1[i] == c2[j] ? 1: 0; + } else if (i == 0) { + if (c1[i] == c2[j]) { + return 1; + } else { + return process(c1, c2, i, j - 1); + } + } else if (j == 0) { + if (c1[i] == c2[j]) { + return 1; + }else { + return process(c1, c2, i - 1, j); + } + }else { + int p1 = process(c1, c2, i - 1, j); + int p2 = process(c1, c2, i, j - 1); + int p3 = c1[i] == c2[j] ? 1 + process(c1, c2, i - 1, j - 1) : 0; + return Math.max(p1, Math.max(p2, p3)); + } + + } + } + static class Dp { public static int longestCommonSubsequence(String s1, String s2) { if (s1 == null || s2 == null || s1.length() == 0 || s2.length() == 0) { @@ -95,4 +130,34 @@ public class LongestCommonSubsequence { } } + static class Dp1 { + public static int longestCommonSubsequence(String s1, String s2) { + if (s1 == null || s2 == null || s1.length() == 0 || s2.length() == 0) { + return 0; + } + int n = s1.length(); + int m = s2.length(); + char[] c1 = s1.toCharArray(); + char[] c2 = s2.toCharArray(); + int[][] dp = new int[n][m]; + dp[0][0] = c1[0] == c2[0] ? 1 : 0; + for (int j = 1; j < m; j++) { + dp[0][j] = c1[0] == c2[j] ? 1 : dp[0][j - 1]; + } + for (int i = 1; i < n; i++) { + dp[i][0] = c1[i] == c2[0] ? 1 : dp[i - 1][0]; + } + for (int i = 1; i < n; i++) { + for (int j = 1; j < m; j++) { + int p1 = dp[i - 1][j]; + int p2 = dp[i][j - 1]; + int p3 = c1[i] == c2[j] ? 1 + dp[i - 1][j - 1] : 0; + dp[i][j] = Math.max(p1, Math.max(p2, p3)); + } + } + return dp[n - 1][m - 1]; + + } + } + }