|
|
package class35;
|
|
|
|
|
|
import java.util.ArrayList;
|
|
|
import java.util.TreeMap;
|
|
|
|
|
|
public class Problem_0673_NumberOfLongestIncreasingSubsequence {
|
|
|
|
|
|
// 好理解的方法,时间复杂度O(N^2)
|
|
|
public static int findNumberOfLIS1(int[] nums) {
|
|
|
if (nums == null || nums.length == 0) {
|
|
|
return 0;
|
|
|
}
|
|
|
int n = nums.length;
|
|
|
int[] lens = new int[n];
|
|
|
int[] cnts = new int[n];
|
|
|
lens[0] = 1;
|
|
|
cnts[0] = 1;
|
|
|
int maxLen = 1;
|
|
|
int allCnt = 1;
|
|
|
for (int i = 1; i < n; i++) {
|
|
|
int preLen = 0;
|
|
|
int preCnt = 1;
|
|
|
for (int j = 0; j < i; j++) {
|
|
|
if (nums[j] >= nums[i] || preLen > lens[j]) {
|
|
|
continue;
|
|
|
}
|
|
|
if (preLen < lens[j]) {
|
|
|
preLen = lens[j];
|
|
|
preCnt = cnts[j];
|
|
|
} else {
|
|
|
preCnt += cnts[j];
|
|
|
}
|
|
|
}
|
|
|
lens[i] = preLen + 1;
|
|
|
cnts[i] = preCnt;
|
|
|
if (maxLen < lens[i]) {
|
|
|
maxLen = lens[i];
|
|
|
allCnt = cnts[i];
|
|
|
} else if (maxLen == lens[i]) {
|
|
|
allCnt += cnts[i];
|
|
|
}
|
|
|
}
|
|
|
return allCnt;
|
|
|
}
|
|
|
|
|
|
// 优化后的最优解,时间复杂度O(N*logN)
|
|
|
public static int findNumberOfLIS2(int[] nums) {
|
|
|
if (nums == null || nums.length == 0) {
|
|
|
return 0;
|
|
|
}
|
|
|
ArrayList<TreeMap<Integer, Integer>> dp = new ArrayList<>();
|
|
|
int len = 0;
|
|
|
int cnt = 0;
|
|
|
for (int num : nums) {
|
|
|
// num之前的长度,num到哪个长度len+1
|
|
|
len = search(dp, num);
|
|
|
// cnt : 最终要去加底下的记录,才是应该填入的value
|
|
|
if (len == 0) {
|
|
|
cnt = 1;
|
|
|
} else {
|
|
|
TreeMap<Integer, Integer> p = dp.get(len - 1);
|
|
|
cnt = p.firstEntry().getValue() - (p.ceilingKey(num) != null ? p.get(p.ceilingKey(num)) : 0);
|
|
|
}
|
|
|
if (len == dp.size()) {
|
|
|
dp.add(new TreeMap<Integer, Integer>());
|
|
|
dp.get(len).put(num, cnt);
|
|
|
} else {
|
|
|
dp.get(len).put(num, dp.get(len).firstEntry().getValue() + cnt);
|
|
|
}
|
|
|
}
|
|
|
return dp.get(dp.size() - 1).firstEntry().getValue();
|
|
|
}
|
|
|
|
|
|
// 二分查找,返回>=num最左的位置
|
|
|
public static int search(ArrayList<TreeMap<Integer, Integer>> dp, int num) {
|
|
|
int l = 0, r = dp.size() - 1, m = 0;
|
|
|
int ans = dp.size();
|
|
|
while (l <= r) {
|
|
|
m = (l + r) / 2;
|
|
|
if (dp.get(m).firstKey() >= num) {
|
|
|
ans = m;
|
|
|
r = m - 1;
|
|
|
} else {
|
|
|
l = m + 1;
|
|
|
}
|
|
|
}
|
|
|
return ans;
|
|
|
}
|
|
|
|
|
|
}
|