|
|
package 第01期.mca_test;
|
|
|
|
|
|
// 这个问题leetcode上可以直接测
|
|
|
// 链接:https://leetcode.com/problems/longest-common-subsequence/
|
|
|
public class Code04_LongestCommonSubsequence {
|
|
|
|
|
|
public static int longestCommonSubsequence1(String s1, String s2) {
|
|
|
if (s1 == null || s2 == null || s1.length() == 0 || s2.length() == 0) {
|
|
|
return 0;
|
|
|
}
|
|
|
char[] str1 = s1.toCharArray();
|
|
|
char[] str2 = s2.toCharArray();
|
|
|
// 尝试
|
|
|
return process1(str1, str2, str1.length - 1, str2.length - 1);
|
|
|
}
|
|
|
|
|
|
public static int process1(char[] str1, char[] str2, int i, int j) {
|
|
|
if (i == 0 && j == 0) {
|
|
|
return str1[i] == str2[j] ? 1 : 0;
|
|
|
} else if (i == 0) {
|
|
|
if (str1[i] == str2[j]) {
|
|
|
return 1;
|
|
|
} else {
|
|
|
return process1(str1, str2, i, j - 1);
|
|
|
}
|
|
|
} else if (j == 0) {
|
|
|
if (str1[i] == str2[j]) {
|
|
|
return 1;
|
|
|
} else {
|
|
|
return process1(str1, str2, i - 1, j);
|
|
|
}
|
|
|
} else { // i != 0 && j != 0
|
|
|
int p1 = process1(str1, str2, i - 1, j);
|
|
|
int p2 = process1(str1, str2, i, j - 1);
|
|
|
int p3 = str1[i] == str2[j] ? (1 + process1(str1, str2, i - 1, j - 1)) : 0;
|
|
|
return Math.max(p1, Math.max(p2, p3));
|
|
|
}
|
|
|
}
|
|
|
|
|
|
public static int longestCommonSubsequence2(String s1, String s2) {
|
|
|
if (s1 == null || s2 == null || s1.length() == 0 || s2.length() == 0) {
|
|
|
return 0;
|
|
|
}
|
|
|
char[] str1 = s1.toCharArray();
|
|
|
char[] str2 = s2.toCharArray();
|
|
|
int N = str1.length;
|
|
|
int M = str2.length;
|
|
|
int[][] dp = new int[N][M];
|
|
|
dp[0][0] = str1[0] == str2[0] ? 1 : 0;
|
|
|
for (int j = 1; j < M; j++) {
|
|
|
dp[0][j] = str1[0] == str2[j] ? 1 : dp[0][j - 1];
|
|
|
}
|
|
|
for (int i = 1; i < N; i++) {
|
|
|
dp[i][0] = str1[i] == str2[0] ? 1 : dp[i - 1][0];
|
|
|
}
|
|
|
for (int i = 1; i < N; i++) {
|
|
|
for (int j = 1; j < M; j++) {
|
|
|
int p1 = dp[i - 1][j];
|
|
|
int p2 = dp[i][j - 1];
|
|
|
int p3 = str1[i] == str2[j] ? (1 + dp[i - 1][j - 1]) : 0;
|
|
|
dp[i][j] = Math.max(p1, Math.max(p2, p3));
|
|
|
}
|
|
|
}
|
|
|
return dp[N - 1][M - 1];
|
|
|
}
|
|
|
|
|
|
}
|