|
|
package 第01期.mca_test;
|
|
|
|
|
|
public class Code02_HorseJump {
|
|
|
|
|
|
// 当前来到的位置是(x,y)
|
|
|
// 还剩下rest步需要跳
|
|
|
// 跳完rest步,正好跳到a,b的方法数是多少?
|
|
|
// 10 * 9
|
|
|
public static int jump(int a, int b, int k) {
|
|
|
return process(0, 0, k, a, b);
|
|
|
}
|
|
|
|
|
|
public static int process(int x, int y, int rest, int a, int b) {
|
|
|
if (x < 0 || x > 9 || y < 0 || y > 8) {
|
|
|
return 0;
|
|
|
}
|
|
|
if (rest == 0) {
|
|
|
return (x == a && y == b) ? 1 : 0;
|
|
|
}
|
|
|
int ways = process(x + 2, y + 1, rest - 1, a, b);
|
|
|
ways += process(x + 1, y + 2, rest - 1, a, b);
|
|
|
ways += process(x - 1, y + 2, rest - 1, a, b);
|
|
|
ways += process(x - 2, y + 1, rest - 1, a, b);
|
|
|
ways += process(x - 2, y - 1, rest - 1, a, b);
|
|
|
ways += process(x - 1, y - 2, rest - 1, a, b);
|
|
|
ways += process(x + 1, y - 2, rest - 1, a, b);
|
|
|
ways += process(x + 2, y - 1, rest - 1, a, b);
|
|
|
return ways;
|
|
|
}
|
|
|
|
|
|
public static int dp(int a, int b, int k) {
|
|
|
int[][][] dp = new int[10][9][k + 1];
|
|
|
dp[a][b][0] = 1;
|
|
|
for (int rest = 1; rest <= k; rest++) {
|
|
|
for (int x = 0; x < 10; x++) {
|
|
|
for (int y = 0; y < 9; y++) {
|
|
|
int ways = pick(dp, x + 2, y + 1, rest - 1);
|
|
|
ways += pick(dp, x + 1, y + 2, rest - 1);
|
|
|
ways += pick(dp, x - 1, y + 2, rest - 1);
|
|
|
ways += pick(dp, x - 2, y + 1, rest - 1);
|
|
|
ways += pick(dp, x - 2, y - 1, rest - 1);
|
|
|
ways += pick(dp, x - 1, y - 2, rest - 1);
|
|
|
ways += pick(dp, x + 1, y - 2, rest - 1);
|
|
|
ways += pick(dp, x + 2, y - 1, rest - 1);
|
|
|
dp[x][y][rest] = ways;
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
return dp[0][0][k];
|
|
|
}
|
|
|
|
|
|
public static int pick(int[][][] dp, int x, int y, int rest) {
|
|
|
if (x < 0 || x > 9 || y < 0 || y > 8) {
|
|
|
return 0;
|
|
|
}
|
|
|
return dp[x][y][rest];
|
|
|
}
|
|
|
|
|
|
public static int ways(int a, int b, int step) {
|
|
|
return f(0, 0, step, a, b);
|
|
|
}
|
|
|
|
|
|
public static int f(int i, int j, int step, int a, int b) {
|
|
|
if (i < 0 || i > 9 || j < 0 || j > 8) {
|
|
|
return 0;
|
|
|
}
|
|
|
if (step == 0) {
|
|
|
return (i == a && j == b) ? 1 : 0;
|
|
|
}
|
|
|
return f(i - 2, j + 1, step - 1, a, b) + f(i - 1, j + 2, step - 1, a, b) + f(i + 1, j + 2, step - 1, a, b)
|
|
|
+ f(i + 2, j + 1, step - 1, a, b) + f(i + 2, j - 1, step - 1, a, b) + f(i + 1, j - 2, step - 1, a, b)
|
|
|
+ f(i - 1, j - 2, step - 1, a, b) + f(i - 2, j - 1, step - 1, a, b);
|
|
|
|
|
|
}
|
|
|
|
|
|
public static int waysdp(int a, int b, int s) {
|
|
|
int[][][] dp = new int[10][9][s + 1];
|
|
|
dp[a][b][0] = 1;
|
|
|
for (int step = 1; step <= s; step++) { // 按层来
|
|
|
for (int i = 0; i < 10; i++) {
|
|
|
for (int j = 0; j < 9; j++) {
|
|
|
dp[i][j][step] = getValue(dp, i - 2, j + 1, step - 1) + getValue(dp, i - 1, j + 2, step - 1)
|
|
|
+ getValue(dp, i + 1, j + 2, step - 1) + getValue(dp, i + 2, j + 1, step - 1)
|
|
|
+ getValue(dp, i + 2, j - 1, step - 1) + getValue(dp, i + 1, j - 2, step - 1)
|
|
|
+ getValue(dp, i - 1, j - 2, step - 1) + getValue(dp, i - 2, j - 1, step - 1);
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
return dp[0][0][s];
|
|
|
}
|
|
|
|
|
|
// 在dp表中,得到dp[i][j][step]的值,但如果(i,j)位置越界的话,返回0;
|
|
|
public static int getValue(int[][][] dp, int i, int j, int step) {
|
|
|
if (i < 0 || i > 9 || j < 0 || j > 8) {
|
|
|
return 0;
|
|
|
}
|
|
|
return dp[i][j][step];
|
|
|
}
|
|
|
|
|
|
public static void main(String[] args) {
|
|
|
int x = 7;
|
|
|
int y = 7;
|
|
|
int step = 10;
|
|
|
System.out.println(ways(x, y, step));
|
|
|
System.out.println(dp(x, y, step));
|
|
|
|
|
|
System.out.println(jump(x, y, step));
|
|
|
}
|
|
|
}
|