You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

122 lines
2.9 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

package 01.mca_test;
// 测试链接https://leetcode.com/problems/longest-palindromic-subsequence/
public class Code01_PalindromeSubsequence {
public static int lpsl1(String s) {
if (s == null || s.length() == 0) {
return 0;
}
char[] str = s.toCharArray();
return f(str, 0, str.length - 1);
}
// str[L..R]最长回文子序列长度返回
public static int f(char[] str, int L, int R) {
if (L == R) {
return 1;
}
if (L == R - 1) {
return str[L] == str[R] ? 2 : 1;
}
int p1 = f(str, L + 1, R - 1);
int p2 = f(str, L, R - 1);
int p3 = f(str, L + 1, R);
int p4 = str[L] != str[R] ? 0 : (2 + f(str, L + 1, R - 1));
return Math.max(Math.max(p1, p2), Math.max(p3, p4));
}
public static int lpsl2(String s) {
if (s == null || s.length() == 0) {
return 0;
}
char[] str = s.toCharArray();
int N = str.length;
int[][] dp = new int[N][N];
dp[N - 1][N - 1] = 1;
for (int i = 0; i < N - 1; i++) {
dp[i][i] = 1;
dp[i][i + 1] = str[i] == str[i + 1] ? 2 : 1;
}
for (int L = N - 3; L >= 0; L--) {
for (int R = L + 2; R < N; R++) {
dp[L][R] = Math.max(dp[L][R - 1], dp[L + 1][R]);
if (str[L] == str[R]) {
dp[L][R] = Math.max(dp[L][R], 2 + dp[L + 1][R - 1]);
}
}
}
return dp[0][N - 1];
}
public static int longestPalindromeSubseq1(String s) {
if (s == null || s.length() == 0) {
return 0;
}
if (s.length() == 1) {
return 1;
}
char[] str = s.toCharArray();
char[] reverse = reverse(str);
return longestCommonSubsequence(str, reverse);
}
public static char[] reverse(char[] str) {
int N = str.length;
char[] reverse = new char[str.length];
for (int i = 0; i < str.length; i++) {
reverse[--N] = str[i];
}
return reverse;
}
public static int longestCommonSubsequence(char[] str1, char[] str2) {
int N = str1.length;
int M = str2.length;
int[][] dp = new int[N][M];
dp[0][0] = str1[0] == str2[0] ? 1 : 0;
for (int i = 1; i < N; i++) {
dp[i][0] = str1[i] == str2[0] ? 1 : dp[i - 1][0];
}
for (int j = 1; j < M; j++) {
dp[0][j] = str1[0] == str2[j] ? 1 : dp[0][j - 1];
}
for (int i = 1; i < N; i++) {
for (int j = 1; j < M; j++) {
dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
if (str1[i] == str2[j]) {
dp[i][j] = Math.max(dp[i][j], dp[i - 1][j - 1] + 1);
}
}
}
return dp[N - 1][M - 1];
}
public static int longestPalindromeSubseq2(String s) {
if (s == null || s.length() == 0) {
return 0;
}
if (s.length() == 1) {
return 1;
}
char[] str = s.toCharArray();
int N = str.length;
int[][] dp = new int[N][N];
dp[N - 1][N - 1] = 1;
for (int i = 0; i < N - 1; i++) {
dp[i][i] = 1;
dp[i][i + 1] = str[i] == str[i + 1] ? 2 : 1;
}
for (int i = N - 3; i >= 0; i--) {
for (int j = i + 2; j < N; j++) {
dp[i][j] = Math.max(dp[i][j - 1], dp[i + 1][j]);
if (str[i] == str[j]) {
dp[i][j] = Math.max(dp[i][j], dp[i + 1][j - 1] + 2);
}
}
}
return dp[0][N - 1];
}
}