|
|
package class18;
|
|
|
|
|
|
public class Code01_HanoiProblem {
|
|
|
|
|
|
public static int step1(int[] arr) {
|
|
|
if (arr == null || arr.length == 0) {
|
|
|
return -1;
|
|
|
}
|
|
|
return process(arr, arr.length - 1, 1, 2, 3);
|
|
|
}
|
|
|
|
|
|
// 目标是: 把0~i的圆盘,从from全部挪到to上
|
|
|
// 返回,根据arr中的状态arr[0..i],它是最优解的第几步?
|
|
|
// f(i, 3 , 2, 1) f(i, 1, 3, 2) f(i, 3, 1, 2)
|
|
|
public static int process(int[] arr, int i, int from, int other, int to) {
|
|
|
if (i == -1) {
|
|
|
return 0;
|
|
|
}
|
|
|
if (arr[i] != from && arr[i] != to) {
|
|
|
return -1;
|
|
|
}
|
|
|
if (arr[i] == from) { // 第一大步没走完
|
|
|
return process(arr, i - 1, from, to, other);
|
|
|
} else { // arr[i] == to
|
|
|
// 已经走完1,2两步了,
|
|
|
int rest = process(arr, i - 1, other, from, to); // 第三大步完成的程度
|
|
|
if (rest == -1) {
|
|
|
return -1;
|
|
|
}
|
|
|
return (1 << i) + rest;
|
|
|
}
|
|
|
}
|
|
|
|
|
|
public static int step2(int[] arr) {
|
|
|
if (arr == null || arr.length == 0) {
|
|
|
return -1;
|
|
|
}
|
|
|
int from = 1;
|
|
|
int mid = 2;
|
|
|
int to = 3;
|
|
|
int i = arr.length - 1;
|
|
|
int res = 0;
|
|
|
int tmp = 0;
|
|
|
while (i >= 0) {
|
|
|
if (arr[i] != from && arr[i] != to) {
|
|
|
return -1;
|
|
|
}
|
|
|
if (arr[i] == to) {
|
|
|
res += 1 << i;
|
|
|
tmp = from;
|
|
|
from = mid;
|
|
|
} else {
|
|
|
tmp = to;
|
|
|
to = mid;
|
|
|
}
|
|
|
mid = tmp;
|
|
|
i--;
|
|
|
}
|
|
|
return res;
|
|
|
}
|
|
|
|
|
|
public static int kth(int[] arr) {
|
|
|
int N = arr.length;
|
|
|
return step(arr, N - 1, 1, 3, 2);
|
|
|
}
|
|
|
|
|
|
// 0...index这些圆盘,arr[0..index] index+1层塔
|
|
|
// 在哪?from 去哪?to 另一个是啥?other
|
|
|
// arr[0..index]这些状态,是index+1层汉诺塔问题的,最优解第几步
|
|
|
public static int step(int[] arr, int index, int from, int to, int other) {
|
|
|
if (index == -1) {
|
|
|
return 0;
|
|
|
}
|
|
|
if (arr[index] == other) {
|
|
|
return -1;
|
|
|
}
|
|
|
// arr[index] == from arr[index] == to;
|
|
|
if (arr[index] == from) {
|
|
|
return step(arr, index - 1, from, other, to);
|
|
|
} else {
|
|
|
int p1 = (1 << index) - 1;
|
|
|
int p2 = 1;
|
|
|
int p3 = step(arr, index - 1, other, to, from);
|
|
|
if (p3 == -1) {
|
|
|
return -1;
|
|
|
}
|
|
|
return p1 + p2 + p3;
|
|
|
}
|
|
|
}
|
|
|
|
|
|
public static void main(String[] args) {
|
|
|
int[] arr = { 3, 3, 2, 1 };
|
|
|
System.out.println(step1(arr));
|
|
|
System.out.println(step2(arr));
|
|
|
System.out.println(kth(arr));
|
|
|
}
|
|
|
}
|