package class45; // 测试链接: https://leetcode.com/problems/create-maximum-number/ public class Code02_CreateMaximumNumber { public static int[] maxNumber1(int[] nums1, int[] nums2, int k) { int len1 = nums1.length; int len2 = nums2.length; if (k < 0 || k > len1 + len2) { return null; } int[] res = new int[k]; int[][] dp1 = getdp(nums1); // 生成dp1这个表,以后从nums1中,只要固定拿N个数, int[][] dp2 = getdp(nums2); // get1 从arr1里拿的数量 // K - get1 从arr2里拿的数量 for (int get1 = Math.max(0, k - len2); get1 <= Math.min(k, len1); get1++) { // arr1 挑 get1个,怎么得到一个最优结果 int[] pick1 = maxPick(nums1, dp1, get1); int[] pick2 = maxPick(nums2, dp2, k - get1); int[] merge = merge(pick1, pick2); res = preMoreThanLast(res, 0, merge, 0) ? res : merge; } return res; } public static int[] merge(int[] nums1, int[] nums2) { int k = nums1.length + nums2.length; int[] ans = new int[k]; for (int i = 0, j = 0, r = 0; r < k; ++r) { ans[r] = preMoreThanLast(nums1, i, nums2, j) ? nums1[i++] : nums2[j++]; } return ans; } public static boolean preMoreThanLast(int[] nums1, int i, int[] nums2, int j) { while (i < nums1.length && j < nums2.length && nums1[i] == nums2[j]) { i++; j++; } return j == nums2.length || (i < nums1.length && nums1[i] > nums2[j]); } public static int[] maxNumber2(int[] nums1, int[] nums2, int k) { int len1 = nums1.length; int len2 = nums2.length; if (k < 0 || k > len1 + len2) { return null; } int[] res = new int[k]; int[][] dp1 = getdp(nums1); int[][] dp2 = getdp(nums2); for (int get1 = Math.max(0, k - len2); get1 <= Math.min(k, len1); get1++) { int[] pick1 = maxPick(nums1, dp1, get1); int[] pick2 = maxPick(nums2, dp2, k - get1); int[] merge = mergeBySuffixArray(pick1, pick2); res = moreThan(res, merge) ? res : merge; } return res; } public static boolean moreThan(int[] pre, int[] last) { int i = 0; int j = 0; while (i < pre.length && j < last.length && pre[i] == last[j]) { i++; j++; } return j == last.length || (i < pre.length && pre[i] > last[j]); } public static int[] mergeBySuffixArray(int[] nums1, int[] nums2) { int size1 = nums1.length; int size2 = nums2.length; int[] nums = new int[size1 + 1 + size2]; for (int i = 0; i < size1; i++) { nums[i] = nums1[i] + 2; } nums[size1] = 1; for (int j = 0; j < size2; j++) { nums[j + size1 + 1] = nums2[j] + 2; } DC3 dc3 = new DC3(nums, 11); int[] rank = dc3.rank; int[] ans = new int[size1 + size2]; int i = 0; int j = 0; int r = 0; while (i < size1 && j < size2) { ans[r++] = rank[i] > rank[j + size1 + 1] ? nums1[i++] : nums2[j++]; } while (i < size1) { ans[r++] = nums1[i++]; } while (j < size2) { ans[r++] = nums2[j++]; } return ans; } public static class DC3 { public int[] sa; public int[] rank; public DC3(int[] nums, int max) { sa = sa(nums, max); rank = rank(); } private int[] sa(int[] nums, int max) { int n = nums.length; int[] arr = new int[n + 3]; for (int i = 0; i < n; i++) { arr[i] = nums[i]; } return skew(arr, n, max); } private int[] skew(int[] nums, int n, int K) { int n0 = (n + 2) / 3, n1 = (n + 1) / 3, n2 = n / 3, n02 = n0 + n2; int[] s12 = new int[n02 + 3], sa12 = new int[n02 + 3]; for (int i = 0, j = 0; i < n + (n0 - n1); ++i) { if (0 != i % 3) { s12[j++] = i; } } radixPass(nums, s12, sa12, 2, n02, K); radixPass(nums, sa12, s12, 1, n02, K); radixPass(nums, s12, sa12, 0, n02, K); int name = 0, c0 = -1, c1 = -1, c2 = -1; for (int i = 0; i < n02; ++i) { if (c0 != nums[sa12[i]] || c1 != nums[sa12[i] + 1] || c2 != nums[sa12[i] + 2]) { name++; c0 = nums[sa12[i]]; c1 = nums[sa12[i] + 1]; c2 = nums[sa12[i] + 2]; } if (1 == sa12[i] % 3) { s12[sa12[i] / 3] = name; } else { s12[sa12[i] / 3 + n0] = name; } } if (name < n02) { sa12 = skew(s12, n02, name); for (int i = 0; i < n02; i++) { s12[sa12[i]] = i + 1; } } else { for (int i = 0; i < n02; i++) { sa12[s12[i] - 1] = i; } } int[] s0 = new int[n0], sa0 = new int[n0]; for (int i = 0, j = 0; i < n02; i++) { if (sa12[i] < n0) { s0[j++] = 3 * sa12[i]; } } radixPass(nums, s0, sa0, 0, n0, K); int[] sa = new int[n]; for (int p = 0, t = n0 - n1, k = 0; k < n; k++) { int i = sa12[t] < n0 ? sa12[t] * 3 + 1 : (sa12[t] - n0) * 3 + 2; int j = sa0[p]; if (sa12[t] < n0 ? leq(nums[i], s12[sa12[t] + n0], nums[j], s12[j / 3]) : leq(nums[i], nums[i + 1], s12[sa12[t] - n0 + 1], nums[j], nums[j + 1], s12[j / 3 + n0])) { sa[k] = i; t++; if (t == n02) { for (k++; p < n0; p++, k++) { sa[k] = sa0[p]; } } } else { sa[k] = j; p++; if (p == n0) { for (k++; t < n02; t++, k++) { sa[k] = sa12[t] < n0 ? sa12[t] * 3 + 1 : (sa12[t] - n0) * 3 + 2; } } } } return sa; } private void radixPass(int[] nums, int[] input, int[] output, int offset, int n, int k) { int[] cnt = new int[k + 1]; for (int i = 0; i < n; ++i) { cnt[nums[input[i] + offset]]++; } for (int i = 0, sum = 0; i < cnt.length; ++i) { int t = cnt[i]; cnt[i] = sum; sum += t; } for (int i = 0; i < n; ++i) { output[cnt[nums[input[i] + offset]]++] = input[i]; } } private boolean leq(int a1, int a2, int b1, int b2) { return a1 < b1 || (a1 == b1 && a2 <= b2); } private boolean leq(int a1, int a2, int a3, int b1, int b2, int b3) { return a1 < b1 || (a1 == b1 && leq(a2, a3, b2, b3)); } private int[] rank() { int n = sa.length; int[] ans = new int[n]; for (int i = 0; i < n; i++) { ans[sa[i]] = i; } return ans; } } public static int[][] getdp(int[] arr) { int size = arr.length; // 0~N-1 int pick = arr.length + 1; // 1 ~ N int[][] dp = new int[size][pick]; // get 不从0开始,因为拿0个无意义 for (int get = 1; get < pick; get++) { // 1 ~ N int maxIndex = size - get; // i~N-1 for (int i = size - get; i >= 0; i--) { if (arr[i] >= arr[maxIndex]) { maxIndex = i; } dp[i][get] = maxIndex; } } return dp; } public static int[] maxPick(int[] arr, int[][] dp, int pick) { int[] res = new int[pick]; for (int resIndex = 0, dpRow = 0; pick > 0; pick--, resIndex++) { res[resIndex] = arr[dp[dpRow][pick]]; dpRow = dp[dpRow][pick] + 1; } return res; } }