package class16; import java.util.HashMap; import java.util.HashSet; import java.util.Map.Entry; // no negative weight public class Code06_Dijkstra { public static HashMap dijkstra1(Node from) { HashMap distanceMap = new HashMap<>(); distanceMap.put(from, 0); // 打过对号的点 HashSet selectedNodes = new HashSet<>(); Node minNode = getMinDistanceAndUnselectedNode(distanceMap, selectedNodes); while (minNode != null) { // 原始点 -> minNode(跳转点) 最小距离distance int distance = distanceMap.get(minNode); for (Edge edge : minNode.edges) { Node toNode = edge.to; if (!distanceMap.containsKey(toNode)) { distanceMap.put(toNode, distance + edge.weight); } else { // toNode distanceMap.put(edge.to, Math.min(distanceMap.get(toNode), distance + edge.weight)); } } selectedNodes.add(minNode); minNode = getMinDistanceAndUnselectedNode(distanceMap, selectedNodes); } return distanceMap; } public static Node getMinDistanceAndUnselectedNode(HashMap distanceMap, HashSet touchedNodes) { Node minNode = null; int minDistance = Integer.MAX_VALUE; for (Entry entry : distanceMap.entrySet()) { Node node = entry.getKey(); int distance = entry.getValue(); if (!touchedNodes.contains(node) && distance < minDistance) { minNode = node; minDistance = distance; } } return minNode; } public static class NodeRecord { public Node node; public int distance; public NodeRecord(Node node, int distance) { this.node = node; this.distance = distance; } } public static class NodeHeap { private Node[] nodes; // 实际的堆结构 // key 某一个node, value 上面堆中的位置 private HashMap heapIndexMap; // key 某一个节点, value 从源节点出发到该节点的目前最小距离 private HashMap distanceMap; private int size; // 堆上有多少个点 public NodeHeap(int size) { nodes = new Node[size]; heapIndexMap = new HashMap<>(); distanceMap = new HashMap<>(); size = 0; } public boolean isEmpty() { return size == 0; } // 有一个点叫node,现在发现了一个从源节点出发到达node的距离为distance // 判断要不要更新,如果需要的话,就更新 public void addOrUpdateOrIgnore(Node node, int distance) { if (inHeap(node)) { distanceMap.put(node, Math.min(distanceMap.get(node), distance)); insertHeapify(heapIndexMap.get(node)); } if (!isEntered(node)) { nodes[size] = node; heapIndexMap.put(node, size); distanceMap.put(node, distance); insertHeapify(size++); } } public NodeRecord pop() { NodeRecord nodeRecord = new NodeRecord(nodes[0], distanceMap.get(nodes[0])); swap(0, size - 1); heapIndexMap.put(nodes[size - 1], -1); distanceMap.remove(nodes[size - 1]); // free C++同学还要把原本堆顶节点析构,对java同学不必 nodes[size - 1] = null; heapify(0, --size); return nodeRecord; } private void insertHeapify(int index) { while (distanceMap.get(nodes[index]) < distanceMap.get(nodes[(index - 1) / 2])) { swap(index, (index - 1) / 2); index = (index - 1) / 2; } } private void heapify(int index, int size) { int left = index * 2 + 1; while (left < size) { int smallest = left + 1 < size && distanceMap.get(nodes[left + 1]) < distanceMap.get(nodes[left]) ? left + 1 : left; smallest = distanceMap.get(nodes[smallest]) < distanceMap.get(nodes[index]) ? smallest : index; if (smallest == index) { break; } swap(smallest, index); index = smallest; left = index * 2 + 1; } } private boolean isEntered(Node node) { return heapIndexMap.containsKey(node); } private boolean inHeap(Node node) { return isEntered(node) && heapIndexMap.get(node) != -1; } private void swap(int index1, int index2) { heapIndexMap.put(nodes[index1], index2); heapIndexMap.put(nodes[index2], index1); Node tmp = nodes[index1]; nodes[index1] = nodes[index2]; nodes[index2] = tmp; } } // 改进后的dijkstra算法 // 从head出发,所有head能到达的节点,生成到达每个节点的最小路径记录并返回 public static HashMap dijkstra2(Node head, int size) { NodeHeap nodeHeap = new NodeHeap(size); nodeHeap.addOrUpdateOrIgnore(head, 0); HashMap result = new HashMap<>(); while (!nodeHeap.isEmpty()) { NodeRecord record = nodeHeap.pop(); Node cur = record.node; int distance = record.distance; for (Edge edge : cur.edges) { nodeHeap.addOrUpdateOrIgnore(edge.to, edge.weight + distance); } result.put(cur, distance); } return result; } }