You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

190 lines
3.2 KiB

2 years ago
package class26;
public class Code02_FibonacciProblem {
public static int f1(int n) {
if (n < 1) {
return 0;
}
if (n == 1 || n == 2) {
return 1;
}
return f1(n - 1) + f1(n - 2);
}
public static int f2(int n) {
if (n < 1) {
return 0;
}
if (n == 1 || n == 2) {
return 1;
}
int res = 1;
int pre = 1;
int tmp = 0;
for (int i = 3; i <= n; i++) {
tmp = res;
res = res + pre;
pre = tmp;
}
return res;
}
// O(logN)
public static int f3(int n) {
if (n < 1) {
return 0;
}
if (n == 1 || n == 2) {
return 1;
}
// [ 1 ,1 ]
// [ 1, 0 ]
int[][] base = {
{ 1, 1 },
{ 1, 0 }
};
int[][] res = matrixPower(base, n - 2);
return res[0][0] + res[1][0];
}
public static int[][] matrixPower(int[][] m, int p) {
int[][] res = new int[m.length][m[0].length];
for (int i = 0; i < res.length; i++) {
res[i][i] = 1;
}
// res = 矩阵中的1
int[][] t = m;// 矩阵1次方
for (; p != 0; p >>= 1) {
if ((p & 1) != 0) {
res = product(res, t);
}
t = product(t, t);
}
return res;
}
// 两个矩阵乘完之后的结果返回
public static int[][] product(int[][] a, int[][] b) {
int n = a.length;
int m = b[0].length;
int k = a[0].length; // a的列数同时也是b的行数
int[][] ans = new int[n][m];
for(int i = 0 ; i < n; i++) {
for(int j = 0 ; j < m;j++) {
for(int c = 0; c < k; c++) {
ans[i][j] += a[i][c] * b[c][j];
}
}
}
return ans;
}
public static int s1(int n) {
if (n < 1) {
return 0;
}
if (n == 1 || n == 2) {
return n;
}
return s1(n - 1) + s1(n - 2);
}
public static int s2(int n) {
if (n < 1) {
return 0;
}
if (n == 1 || n == 2) {
return n;
}
int res = 2;
int pre = 1;
int tmp = 0;
for (int i = 3; i <= n; i++) {
tmp = res;
res = res + pre;
pre = tmp;
}
return res;
}
public static int s3(int n) {
if (n < 1) {
return 0;
}
if (n == 1 || n == 2) {
return n;
}
int[][] base = { { 1, 1 }, { 1, 0 } };
int[][] res = matrixPower(base, n - 2);
return 2 * res[0][0] + res[1][0];
}
public static int c1(int n) {
if (n < 1) {
return 0;
}
if (n == 1 || n == 2 || n == 3) {
return n;
}
return c1(n - 1) + c1(n - 3);
}
public static int c2(int n) {
if (n < 1) {
return 0;
}
if (n == 1 || n == 2 || n == 3) {
return n;
}
int res = 3;
int pre = 2;
int prepre = 1;
int tmp1 = 0;
int tmp2 = 0;
for (int i = 4; i <= n; i++) {
tmp1 = res;
tmp2 = pre;
res = res + prepre;
pre = tmp1;
prepre = tmp2;
}
return res;
}
public static int c3(int n) {
if (n < 1) {
return 0;
}
if (n == 1 || n == 2 || n == 3) {
return n;
}
int[][] base = {
{ 1, 1, 0 },
{ 0, 0, 1 },
{ 1, 0, 0 } };
int[][] res = matrixPower(base, n - 3);
return 3 * res[0][0] + 2 * res[1][0] + res[2][0];
}
public static void main(String[] args) {
int n = 19;
System.out.println(f1(n));
System.out.println(f2(n));
System.out.println(f3(n));
System.out.println("===");
System.out.println(s1(n));
System.out.println(s2(n));
System.out.println(s3(n));
System.out.println("===");
System.out.println(c1(n));
System.out.println(c2(n));
System.out.println(c3(n));
System.out.println("===");
}
}