|
|
|
|
package 第03期.mca_07;
|
|
|
|
|
|
|
|
|
|
// 用Kruskal算法实现最小生成树
|
|
|
|
|
// 牛客网的测试数据
|
|
|
|
|
// 测试链接 : https://www.nowcoder.com/questionTerminal/c23eab7bb39748b6b224a8a3afbe396b
|
|
|
|
|
// 请同学们务必参考如下代码中关于输入、输出的处理
|
|
|
|
|
// 这是输入输出处理效率很高的写法
|
|
|
|
|
// 提交以下所有代码,把主类名改成Main,可以直接通过
|
|
|
|
|
import java.io.BufferedReader;
|
|
|
|
|
import java.io.IOException;
|
|
|
|
|
import java.io.InputStreamReader;
|
|
|
|
|
import java.io.OutputStreamWriter;
|
|
|
|
|
import java.io.PrintWriter;
|
|
|
|
|
import java.io.StreamTokenizer;
|
|
|
|
|
import java.util.Arrays;
|
|
|
|
|
|
|
|
|
|
public class Code02_Kruskal {
|
|
|
|
|
|
|
|
|
|
public static int MAXM = 100001;
|
|
|
|
|
|
|
|
|
|
public static int[][] edges = new int[MAXM][3];
|
|
|
|
|
|
|
|
|
|
public static void main(String[] args) throws IOException {
|
|
|
|
|
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
|
|
|
|
|
StreamTokenizer in = new StreamTokenizer(br);
|
|
|
|
|
PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));
|
|
|
|
|
while (in.nextToken() != StreamTokenizer.TT_EOF) {
|
|
|
|
|
int n = (int) in.nval;
|
|
|
|
|
in.nextToken();
|
|
|
|
|
int m = (int) in.nval;
|
|
|
|
|
for (int i = 0; i < m; i++) {
|
|
|
|
|
in.nextToken();
|
|
|
|
|
edges[i][0] = (int) in.nval;
|
|
|
|
|
in.nextToken();
|
|
|
|
|
edges[i][1] = (int) in.nval;
|
|
|
|
|
in.nextToken();
|
|
|
|
|
edges[i][2] = (int) in.nval;
|
|
|
|
|
}
|
|
|
|
|
Arrays.sort(edges, 0, m, (a, b) -> a[2] - b[2]);
|
|
|
|
|
build(n);
|
|
|
|
|
int ans = 0;
|
|
|
|
|
for (int[] edge : edges) {
|
|
|
|
|
if (union(edge[0], edge[1])) {
|
|
|
|
|
ans += edge[2];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
out.println(ans);
|
|
|
|
|
out.flush();
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// 下面是并查集结构
|
|
|
|
|
public static int MAXN = 10001;
|
|
|
|
|
|
|
|
|
|
public static int[] father = new int[MAXN];
|
|
|
|
|
|
|
|
|
|
public static int[] size = new int[MAXN];
|
|
|
|
|
|
|
|
|
|
public static int[] help = new int[MAXN];
|
|
|
|
|
|
|
|
|
|
public static void build(int n) {
|
|
|
|
|
for (int i = 1; i <= n; i++) {
|
|
|
|
|
father[i] = i;
|
|
|
|
|
size[i] = 1;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
private static int find(int i) {
|
|
|
|
|
int size = 0;
|
|
|
|
|
while (i != father[i]) {
|
|
|
|
|
help[size++] = i;
|
|
|
|
|
i = father[i];
|
|
|
|
|
}
|
|
|
|
|
while (size > 0) {
|
|
|
|
|
father[help[--size]] = i;
|
|
|
|
|
}
|
|
|
|
|
return i;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// 如果i和j,原本是一个集合,返回false
|
|
|
|
|
// 如果i和j,不是一个集合,合并,然后返回true
|
|
|
|
|
public static boolean union(int i, int j) {
|
|
|
|
|
int fi = find(i);
|
|
|
|
|
int fj = find(j);
|
|
|
|
|
if (fi != fj) {
|
|
|
|
|
if (size[fi] >= size[fj]) {
|
|
|
|
|
father[fj] = fi;
|
|
|
|
|
size[fi] += size[fj];
|
|
|
|
|
} else {
|
|
|
|
|
father[fi] = fj;
|
|
|
|
|
size[fj] += size[fi];
|
|
|
|
|
}
|
|
|
|
|
return true;
|
|
|
|
|
} else {
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
}
|