|
|
|
|
package 第01期.mca_test;
|
|
|
|
|
|
|
|
|
|
public class Code04_DistinctSubseq {
|
|
|
|
|
|
|
|
|
|
public static int numDistinct1(String S, String T) {
|
|
|
|
|
char[] s = S.toCharArray();
|
|
|
|
|
char[] t = T.toCharArray();
|
|
|
|
|
return process(s, t, s.length, t.length);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
public static int process(char[] s, char[] t, int i, int j) {
|
|
|
|
|
if (j == 0) {
|
|
|
|
|
return 1;
|
|
|
|
|
}
|
|
|
|
|
if (i == 0) {
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
int res = process(s, t, i - 1, j);
|
|
|
|
|
if (s[i - 1] == t[j - 1]) {
|
|
|
|
|
res += process(s, t, i - 1, j - 1);
|
|
|
|
|
}
|
|
|
|
|
return res;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// S[...i]的所有子序列中,包含多少个字面值等于T[...j]这个字符串的子序列
|
|
|
|
|
// 记为dp[i][j]
|
|
|
|
|
// 可能性1)S[...i]的所有子序列中,都不以s[i]结尾,则dp[i][j]肯定包含dp[i-1][j]
|
|
|
|
|
// 可能性2)S[...i]的所有子序列中,都必须以s[i]结尾,
|
|
|
|
|
// 这要求S[i] == T[j],则dp[i][j]包含dp[i-1][j-1]
|
|
|
|
|
public static int numDistinct2(String S, String T) {
|
|
|
|
|
char[] s = S.toCharArray();
|
|
|
|
|
char[] t = T.toCharArray();
|
|
|
|
|
// dp[i][j] : s[0..i] T[0...j]
|
|
|
|
|
|
|
|
|
|
// dp[i][j] : s只拿前i个字符做子序列,有多少个子序列,字面值等于T的前j个字符的前缀串
|
|
|
|
|
int[][] dp = new int[s.length + 1][t.length + 1];
|
|
|
|
|
// dp[0][0]
|
|
|
|
|
// dp[0][j] = s只拿前0个字符做子序列, T前j个字符
|
|
|
|
|
for (int j = 0; j <= t.length; j++) {
|
|
|
|
|
dp[0][j] = 0;
|
|
|
|
|
}
|
|
|
|
|
for (int i = 0; i <= s.length; i++) {
|
|
|
|
|
dp[i][0] = 1;
|
|
|
|
|
}
|
|
|
|
|
for (int i = 1; i <= s.length; i++) {
|
|
|
|
|
for (int j = 1; j <= t.length; j++) {
|
|
|
|
|
dp[i][j] = dp[i - 1][j] + (s[i - 1] == t[j - 1] ? dp[i - 1][j - 1] : 0);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return dp[s.length][t.length];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
public static int numDistinct3(String S, String T) {
|
|
|
|
|
char[] s = S.toCharArray();
|
|
|
|
|
char[] t = T.toCharArray();
|
|
|
|
|
int[] dp = new int[t.length + 1];
|
|
|
|
|
dp[0] = 1;
|
|
|
|
|
for (int j = 1; j <= t.length; j++) {
|
|
|
|
|
dp[j] = 0;
|
|
|
|
|
}
|
|
|
|
|
for (int i = 1; i <= s.length; i++) {
|
|
|
|
|
for (int j = t.length; j >= 1; j--) {
|
|
|
|
|
dp[j] += s[i - 1] == t[j - 1] ? dp[j - 1] : 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return dp[t.length];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
public static int dp(String S, String T) {
|
|
|
|
|
char[] s = S.toCharArray();
|
|
|
|
|
char[] t = T.toCharArray();
|
|
|
|
|
int N = s.length;
|
|
|
|
|
int M = t.length;
|
|
|
|
|
int[][] dp = new int[N][M];
|
|
|
|
|
// s[0..0] T[0..0] dp[0][0]
|
|
|
|
|
dp[0][0] = s[0] == t[0] ? 1 : 0;
|
|
|
|
|
for (int i = 1; i < N; i++) {
|
|
|
|
|
dp[i][0] = s[i] == t[0] ? (dp[i - 1][0] + 1) : dp[i - 1][0];
|
|
|
|
|
}
|
|
|
|
|
for (int i = 1; i < N; i++) {
|
|
|
|
|
for (int j = 1; j <= Math.min(i, M - 1); j++) {
|
|
|
|
|
dp[i][j] = dp[i - 1][j];
|
|
|
|
|
if (s[i] == t[j]) {
|
|
|
|
|
dp[i][j] += dp[i - 1][j - 1];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return dp[N - 1][M - 1];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
public static void main(String[] args) {
|
|
|
|
|
String S = "1212311112121132";
|
|
|
|
|
String T = "13";
|
|
|
|
|
|
|
|
|
|
System.out.println(numDistinct3(S, T));
|
|
|
|
|
System.out.println(dp(S, T));
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
}
|