|
|
|
|
package class06;
|
|
|
|
|
|
|
|
|
|
public class Code01_MaxXOR {
|
|
|
|
|
|
|
|
|
|
// O(N^2)
|
|
|
|
|
public static int maxXorSubarray1(int[] arr) {
|
|
|
|
|
if (arr == null || arr.length == 0) {
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
// 准备一个前缀异或和数组eor
|
|
|
|
|
// eor[i] = arr[0...i]的异或结果
|
|
|
|
|
int[] eor = new int[arr.length];
|
|
|
|
|
eor[0] = arr[0];
|
|
|
|
|
// 生成eor数组,eor[i]代表arr[0..i]的异或和
|
|
|
|
|
for (int i = 1; i < arr.length; i++) {
|
|
|
|
|
eor[i] = eor[i - 1] ^ arr[i];
|
|
|
|
|
}
|
|
|
|
|
int max = Integer.MIN_VALUE;
|
|
|
|
|
for (int j = 0; j < arr.length; j++) {
|
|
|
|
|
for (int i = 0; i <= j; i++) { // 依次尝试arr[0..j]、arr[1..j]..arr[i..j]..arr[j..j]
|
|
|
|
|
max = Math.max(max, i == 0 ? eor[j] : eor[j] ^ eor[i - 1]);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return max;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// 前缀树的Node结构
|
|
|
|
|
// nexts[0] -> 0方向的路
|
|
|
|
|
// nexts[1] -> 1方向的路
|
|
|
|
|
// nexts[0] == null 0方向上没路!
|
|
|
|
|
// nexts[0] != null 0方向有路,可以跳下一个节点
|
|
|
|
|
// nexts[1] == null 1方向上没路!
|
|
|
|
|
// nexts[1] != null 1方向有路,可以跳下一个节点
|
|
|
|
|
public static class Node {
|
|
|
|
|
public Node[] nexts = new Node[2];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// 基于本题,定制前缀树的实现
|
|
|
|
|
public static class NumTrie {
|
|
|
|
|
// 头节点
|
|
|
|
|
public Node head = new Node();
|
|
|
|
|
|
|
|
|
|
public void add(int newNum) {
|
|
|
|
|
Node cur = head;
|
|
|
|
|
for (int move = 31; move >= 0; move--) {
|
|
|
|
|
int path = ((newNum >> move) & 1);
|
|
|
|
|
cur.nexts[path] = cur.nexts[path] == null ? new Node() : cur.nexts[path];
|
|
|
|
|
cur = cur.nexts[path];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// 该结构之前收集了一票数字,并且建好了前缀树
|
|
|
|
|
// num和 谁 ^ 最大的结果(把结果返回)
|
|
|
|
|
public int maxXor(int num) {
|
|
|
|
|
Node cur = head;
|
|
|
|
|
int ans = 0;
|
|
|
|
|
for (int move = 31; move >= 0; move--) {
|
|
|
|
|
// 取出num中第move位的状态,path只有两种值0就1,整数
|
|
|
|
|
int path = (num >> move) & 1;
|
|
|
|
|
// 期待遇到的东西
|
|
|
|
|
int best = move == 31 ? path : (path ^ 1);
|
|
|
|
|
// 实际遇到的东西
|
|
|
|
|
best = cur.nexts[best] != null ? best : (best ^ 1);
|
|
|
|
|
// (path ^ best) 当前位位异或完的结果
|
|
|
|
|
ans |= (path ^ best) << move;
|
|
|
|
|
cur = cur.nexts[best];
|
|
|
|
|
}
|
|
|
|
|
return ans;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// O(N)
|
|
|
|
|
public static int maxXorSubarray2(int[] arr) {
|
|
|
|
|
if (arr == null || arr.length == 0) {
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
int max = Integer.MIN_VALUE;
|
|
|
|
|
// 0~i整体异或和
|
|
|
|
|
int xor = 0;
|
|
|
|
|
NumTrie numTrie = new NumTrie();
|
|
|
|
|
numTrie.add(0);
|
|
|
|
|
for (int i = 0; i < arr.length; i++) {
|
|
|
|
|
xor ^= arr[i]; // 0 ~ i
|
|
|
|
|
max = Math.max(max, numTrie.maxXor(xor));
|
|
|
|
|
numTrie.add(xor);
|
|
|
|
|
}
|
|
|
|
|
return max;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// for test
|
|
|
|
|
public static int[] generateRandomArray(int maxSize, int maxValue) {
|
|
|
|
|
int[] arr = new int[(int) ((maxSize + 1) * Math.random())];
|
|
|
|
|
for (int i = 0; i < arr.length; i++) {
|
|
|
|
|
arr[i] = (int) ((maxValue + 1) * Math.random()) - (int) (maxValue * Math.random());
|
|
|
|
|
}
|
|
|
|
|
return arr;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// for test
|
|
|
|
|
public static void printArray(int[] arr) {
|
|
|
|
|
if (arr == null) {
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
for (int i = 0; i < arr.length; i++) {
|
|
|
|
|
System.out.print(arr[i] + " ");
|
|
|
|
|
}
|
|
|
|
|
System.out.println();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// for test
|
|
|
|
|
public static void main(String[] args) {
|
|
|
|
|
int testTime = 500000;
|
|
|
|
|
int maxSize = 30;
|
|
|
|
|
int maxValue = 50;
|
|
|
|
|
boolean succeed = true;
|
|
|
|
|
for (int i = 0; i < testTime; i++) {
|
|
|
|
|
int[] arr = generateRandomArray(maxSize, maxValue);
|
|
|
|
|
int comp = maxXorSubarray1(arr);
|
|
|
|
|
int res = maxXorSubarray2(arr);
|
|
|
|
|
if (res != comp) {
|
|
|
|
|
succeed = false;
|
|
|
|
|
printArray(arr);
|
|
|
|
|
System.out.println(res);
|
|
|
|
|
System.out.println(comp);
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
System.out.println(succeed ? "Nice!" : "Fucking fucked!");
|
|
|
|
|
}
|
|
|
|
|
}
|