|
|
|
|
package class49;
|
|
|
|
|
|
|
|
|
|
// 这道题在leetcode上,所有题解都只能做到O( (logN) 平方)的解
|
|
|
|
|
// 我们课上讲的是O(logN)的解
|
|
|
|
|
// 打败所有题解
|
|
|
|
|
public class Problem_0440_KthSmallestInLexicographicalOrder {
|
|
|
|
|
|
|
|
|
|
public static int[] offset = { 0, 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000 };
|
|
|
|
|
|
|
|
|
|
public static int[] number = { 0, 1, 11, 111, 1111, 11111, 111111, 1111111, 11111111, 111111111, 1111111111 };
|
|
|
|
|
|
|
|
|
|
public static int findKthNumber(int n, int k) {
|
|
|
|
|
// 数字num,有几位,len位
|
|
|
|
|
// 65237, 5位,len = 5
|
|
|
|
|
int len = len(n);
|
|
|
|
|
// 65237, 开头数字,6,first
|
|
|
|
|
int first = n / offset[len];
|
|
|
|
|
// 65237,左边有几个?
|
|
|
|
|
int left = (first - 1) * number[len];
|
|
|
|
|
int pick = 0;
|
|
|
|
|
int already = 0;
|
|
|
|
|
if (k <= left) {
|
|
|
|
|
// k / a 向上取整-> (k + a - 1) / a
|
|
|
|
|
pick = (k + number[len] - 1) / number[len];
|
|
|
|
|
already = (pick - 1) * number[len];
|
|
|
|
|
return kth((pick + 1) * offset[len] - 1, len, k - already);
|
|
|
|
|
}
|
|
|
|
|
int mid = number[len - 1] + (n % offset[len]) + 1;
|
|
|
|
|
if (k - left <= mid) {
|
|
|
|
|
return kth(n, len, k - left);
|
|
|
|
|
}
|
|
|
|
|
k -= left + mid;
|
|
|
|
|
len--;
|
|
|
|
|
pick = (k + number[len] - 1) / number[len] + first;
|
|
|
|
|
already = (pick - first - 1) * number[len];
|
|
|
|
|
return kth((pick + 1) * offset[len] - 1, len, k - already);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
public static int len(int n) {
|
|
|
|
|
int len = 0;
|
|
|
|
|
while (n != 0) {
|
|
|
|
|
n /= 10;
|
|
|
|
|
len++;
|
|
|
|
|
}
|
|
|
|
|
return len;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
public static int kth(int max, int len, int kth) {
|
|
|
|
|
// 中间范围还管不管的着!
|
|
|
|
|
// 有任何一步,中间位置没命中,左或者右命中了,那以后就都管不着了!
|
|
|
|
|
// 但是开始时,肯定是管的着的!
|
|
|
|
|
boolean closeToMax = true;
|
|
|
|
|
int ans = max / offset[len];
|
|
|
|
|
while (--kth > 0) {
|
|
|
|
|
max %= offset[len--];
|
|
|
|
|
int pick = 0;
|
|
|
|
|
if (!closeToMax) {
|
|
|
|
|
pick = (kth - 1) / number[len];
|
|
|
|
|
ans = ans * 10 + pick;
|
|
|
|
|
kth -= pick * number[len];
|
|
|
|
|
} else {
|
|
|
|
|
int first = max / offset[len];
|
|
|
|
|
int left = first * number[len];
|
|
|
|
|
if (kth <= left) {
|
|
|
|
|
closeToMax = false;
|
|
|
|
|
pick = (kth - 1) / number[len];
|
|
|
|
|
ans = ans * 10 + pick;
|
|
|
|
|
kth -= pick * number[len];
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
kth -= left;
|
|
|
|
|
int mid = number[len - 1] + (max % offset[len]) + 1;
|
|
|
|
|
if (kth <= mid) {
|
|
|
|
|
ans = ans * 10 + first;
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
closeToMax = false;
|
|
|
|
|
kth -= mid;
|
|
|
|
|
len--;
|
|
|
|
|
pick = (kth + number[len] - 1) / number[len] + first;
|
|
|
|
|
ans = ans * 10 + pick;
|
|
|
|
|
kth -= (pick - first - 1) * number[len];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return ans;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
}
|