|
|
|
|
package class38;
|
|
|
|
|
|
|
|
|
|
// 360笔试题
|
|
|
|
|
// 长城守卫军
|
|
|
|
|
// 题目描述:
|
|
|
|
|
// 长城上有连成一排的n个烽火台,每个烽火台都有士兵驻守。
|
|
|
|
|
// 第i个烽火台驻守着ai个士兵,相邻峰火台的距离为1。另外,有m位将军,
|
|
|
|
|
// 每位将军可以驻守一个峰火台,每个烽火台可以有多个将军驻守,
|
|
|
|
|
// 将军可以影响所有距离他驻守的峰火台小于等于x的烽火台。
|
|
|
|
|
// 每个烽火台的基础战斗力为士兵数,另外,每个能影响此烽火台的将军都能使这个烽火台的战斗力提升k。
|
|
|
|
|
// 长城的战斗力为所有烽火台的战斗力的最小值。
|
|
|
|
|
// 请问长城的最大战斗力可以是多少?
|
|
|
|
|
// 输入描述
|
|
|
|
|
// 第一行四个正整数n,m,x,k(1<=x<=n<=10^5,0<=m<=10^5,1<=k<=10^5)
|
|
|
|
|
// 第二行n个整数ai(0<=ai<=10^5)
|
|
|
|
|
// 输出描述 仅一行,一个整数,表示长城的最大战斗力
|
|
|
|
|
// 样例输入
|
|
|
|
|
// 5 2 1 2
|
|
|
|
|
// 4 4 2 4 4
|
|
|
|
|
// 样例输出
|
|
|
|
|
// 6
|
|
|
|
|
public class Code02_GreatWall {
|
|
|
|
|
|
|
|
|
|
public static int maxForce(int[] wall, int m, int x, int k) {
|
|
|
|
|
long L = 0;
|
|
|
|
|
long R = 0;
|
|
|
|
|
for (int num : wall) {
|
|
|
|
|
R = Math.max(R, num);
|
|
|
|
|
}
|
|
|
|
|
R += m * k;
|
|
|
|
|
long ans = 0;
|
|
|
|
|
while (L <= R) {
|
|
|
|
|
long M = (L + R) / 2;
|
|
|
|
|
if (can(wall, m, x, k, M)) {
|
|
|
|
|
ans = M;
|
|
|
|
|
L = M + 1;
|
|
|
|
|
} else {
|
|
|
|
|
R = M - 1;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return (int) ans;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
public static boolean can(int[] wall, int m, int x, int k, long limit) {
|
|
|
|
|
int N = wall.length;
|
|
|
|
|
// 注意:下标从1开始
|
|
|
|
|
SegmentTree st = new SegmentTree(wall);
|
|
|
|
|
st.build(1, N, 1);
|
|
|
|
|
int need = 0;
|
|
|
|
|
for (int i = 0; i < N; i++) {
|
|
|
|
|
// 注意:下标从1开始
|
|
|
|
|
long cur = st.query(i + 1, i + 1, 1, N, 1);
|
|
|
|
|
if (cur < limit) {
|
|
|
|
|
int add = (int) ((limit - cur + k - 1) / k);
|
|
|
|
|
need += add;
|
|
|
|
|
if (need > m) {
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
st.add(i + 1, Math.min(i + x, N), add * k, 1, N, 1);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
public static class SegmentTree {
|
|
|
|
|
private int MAXN;
|
|
|
|
|
private int[] arr;
|
|
|
|
|
private int[] sum;
|
|
|
|
|
private int[] lazy;
|
|
|
|
|
private int[] change;
|
|
|
|
|
private boolean[] update;
|
|
|
|
|
|
|
|
|
|
public SegmentTree(int[] origin) {
|
|
|
|
|
MAXN = origin.length + 1;
|
|
|
|
|
arr = new int[MAXN];
|
|
|
|
|
for (int i = 1; i < MAXN; i++) {
|
|
|
|
|
arr[i] = origin[i - 1];
|
|
|
|
|
}
|
|
|
|
|
sum = new int[MAXN << 2];
|
|
|
|
|
lazy = new int[MAXN << 2];
|
|
|
|
|
change = new int[MAXN << 2];
|
|
|
|
|
update = new boolean[MAXN << 2];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
private void pushUp(int rt) {
|
|
|
|
|
sum[rt] = sum[rt << 1] + sum[rt << 1 | 1];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
private void pushDown(int rt, int ln, int rn) {
|
|
|
|
|
if (update[rt]) {
|
|
|
|
|
update[rt << 1] = true;
|
|
|
|
|
update[rt << 1 | 1] = true;
|
|
|
|
|
change[rt << 1] = change[rt];
|
|
|
|
|
change[rt << 1 | 1] = change[rt];
|
|
|
|
|
lazy[rt << 1] = 0;
|
|
|
|
|
lazy[rt << 1 | 1] = 0;
|
|
|
|
|
sum[rt << 1] = change[rt] * ln;
|
|
|
|
|
sum[rt << 1 | 1] = change[rt] * rn;
|
|
|
|
|
update[rt] = false;
|
|
|
|
|
}
|
|
|
|
|
if (lazy[rt] != 0) {
|
|
|
|
|
lazy[rt << 1] += lazy[rt];
|
|
|
|
|
sum[rt << 1] += lazy[rt] * ln;
|
|
|
|
|
lazy[rt << 1 | 1] += lazy[rt];
|
|
|
|
|
sum[rt << 1 | 1] += lazy[rt] * rn;
|
|
|
|
|
lazy[rt] = 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
public void build(int l, int r, int rt) {
|
|
|
|
|
if (l == r) {
|
|
|
|
|
sum[rt] = arr[l];
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
int mid = (l + r) >> 1;
|
|
|
|
|
build(l, mid, rt << 1);
|
|
|
|
|
build(mid + 1, r, rt << 1 | 1);
|
|
|
|
|
pushUp(rt);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
public void update(int L, int R, int C, int l, int r, int rt) {
|
|
|
|
|
if (L <= l && r <= R) {
|
|
|
|
|
update[rt] = true;
|
|
|
|
|
change[rt] = C;
|
|
|
|
|
sum[rt] = C * (r - l + 1);
|
|
|
|
|
lazy[rt] = 0;
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
int mid = (l + r) >> 1;
|
|
|
|
|
pushDown(rt, mid - l + 1, r - mid);
|
|
|
|
|
if (L <= mid) {
|
|
|
|
|
update(L, R, C, l, mid, rt << 1);
|
|
|
|
|
}
|
|
|
|
|
if (R > mid) {
|
|
|
|
|
update(L, R, C, mid + 1, r, rt << 1 | 1);
|
|
|
|
|
}
|
|
|
|
|
pushUp(rt);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
public void add(int L, int R, int C, int l, int r, int rt) {
|
|
|
|
|
if (L <= l && r <= R) {
|
|
|
|
|
sum[rt] += C * (r - l + 1);
|
|
|
|
|
lazy[rt] += C;
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
int mid = (l + r) >> 1;
|
|
|
|
|
pushDown(rt, mid - l + 1, r - mid);
|
|
|
|
|
if (L <= mid) {
|
|
|
|
|
add(L, R, C, l, mid, rt << 1);
|
|
|
|
|
}
|
|
|
|
|
if (R > mid) {
|
|
|
|
|
add(L, R, C, mid + 1, r, rt << 1 | 1);
|
|
|
|
|
}
|
|
|
|
|
pushUp(rt);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
public long query(int L, int R, int l, int r, int rt) {
|
|
|
|
|
if (L <= l && r <= R) {
|
|
|
|
|
return sum[rt];
|
|
|
|
|
}
|
|
|
|
|
int mid = (l + r) >> 1;
|
|
|
|
|
pushDown(rt, mid - l + 1, r - mid);
|
|
|
|
|
long ans = 0;
|
|
|
|
|
if (L <= mid) {
|
|
|
|
|
ans += query(L, R, l, mid, rt << 1);
|
|
|
|
|
}
|
|
|
|
|
if (R > mid) {
|
|
|
|
|
ans += query(L, R, mid + 1, r, rt << 1 | 1);
|
|
|
|
|
}
|
|
|
|
|
return ans;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
public static void main(String[] args) {
|
|
|
|
|
int[] wall = { 3, 1, 1, 1, 3 };
|
|
|
|
|
int m = 2;
|
|
|
|
|
int x = 3;
|
|
|
|
|
int k = 1;
|
|
|
|
|
System.out.println(maxForce(wall, m, x, k));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
}
|