## QuickSelect -- Linear-time k-th order statistic ## (i.e. select the k-th smallest element in an unsorted array) ## https://en.wikipedia.org/wiki/Quickselect def partition(array, start, end, pivot): """Partitions by a pivot value, which might not necessarily be in the array. This variant is useful when you want to bound your recursion depth by the range of the input values, and not the length of the array.""" pivot_index = start for i in range(start, end): if array[i] <= pivot: array[i], array[pivot_index] = array[pivot_index], array[i] pivot_index += 1 return pivot_index import random def partition_first(array, start, end): """Selects the first element as pivot. Returns the index where the pivot went to. In this variant, we can guarantee that the pivot will be in its final sorted position. We need this guarantee for QuickSelect.""" if start + 1 == end: return start pivot = array[start] pivot_index = start + 1 for i in range(start + 1, end): if array[i] <= pivot: array[i], array[pivot_index] = array[pivot_index], array[i] pivot_index += 1 # Move pivot to front array[start], array[pivot_index - 1] = array[pivot_index - 1], array[start] return pivot_index - 1 def quick_select(array, k): """NOTE: k-th smallest element counts from 0!""" left = 0 right = len(array) while True: random_index = random.sample(range(left, right), 1)[0] array[left], array[random_index] = array[random_index], array[left] pivot_index = partition_first(array, left, right) if k == pivot_index: return array[pivot_index] if k < pivot_index: right = pivot_index else: left = pivot_index + 1 print(quick_select([0], 0) == 0) print(quick_select([0, 1, 2, 3, 4], 2) == 2) print(quick_select([4, 3, 2, 1, 0], 2) == 2) print(quick_select([1, 3, 4, 2, 0], 2) == 2) # Large test case, for randomized tests lst = list(range(1000)) for _ in range(10): k = random.randint(0, 999) random.shuffle(lst) print(quick_select(lst, k) == k)