parent
a3af358c3f
commit
856b1e611e
@ -0,0 +1,50 @@
|
||||
## Union-Find data structure
|
||||
## https://en.wikipedia.org/wiki/Disjoint-set_data_structure
|
||||
|
||||
parents = [0, 1, 2, 3, 4, 5, 6] # parent[i] is the parent of i
|
||||
weights = [1, 1, 1, 1, 1, 1, 1]
|
||||
|
||||
def find_root(parents, p):
|
||||
'''Average: O(log n)'''
|
||||
root = p
|
||||
while parents[root] != root:
|
||||
root = parents[root]
|
||||
# Flatten tree
|
||||
while parents[p] != p:
|
||||
parents[p], p = root, parents[p]
|
||||
return root
|
||||
|
||||
def union(parents, p, q):
|
||||
'''Average: O(log n)'''
|
||||
p = find_root(parents, p)
|
||||
q = find_root(parents, q)
|
||||
# Link the smaller node to the larger node
|
||||
if weights[p] > weights[q]:
|
||||
parents[q] = p
|
||||
weights[p] += weights[q]
|
||||
else:
|
||||
parents[p] = q
|
||||
weights[q] += weights[p]
|
||||
|
||||
|
||||
|
||||
# Start with all elements separate
|
||||
# -> [0], [1], [2], [3], [4], [5], [6]
|
||||
print(find_root(parents, 2) == 2)
|
||||
|
||||
# Merge 1, 2, 3 and 4, 5, 6
|
||||
# -> [0], [1, 2, 3], [4, 5, 6]
|
||||
union(parents, 1, 2)
|
||||
union(parents, 2, 3)
|
||||
union(parents, 4, 5)
|
||||
union(parents, 4, 6)
|
||||
|
||||
# Roots of 1, 2, 3 and 4, 5, 6 are the same
|
||||
print(find_root(parents, 0))
|
||||
print(list(find_root(parents, i) for i in (1, 2, 3)))
|
||||
print(list(find_root(parents, i) for i in (4, 5, 6)))
|
||||
|
||||
# Merge 2, 4
|
||||
# -> [0], [1, 2, 3, 4, 5, 6]
|
||||
union(parents, 2, 4)
|
||||
print(list(find_root(parents, i) for i in (1, 2, 3, 4, 5, 6)))
|
Loading…
Reference in new issue