|
|
|
|
HashMap 源码中主要了解其核心源码及实现逻辑。ConcurrentHashMap 就不再重复那些数据结构相关的内容咯,这里重点看一下它的并发安全实现。源码如下。
|
|
|
|
|
|
|
|
|
|
```java
|
|
|
|
|
public class ConcurrentHashMap<K,V> extends AbstractMap<K,V> implements ConcurrentMap<K,V>,
|
|
|
|
|
Serializable {
|
|
|
|
|
|
|
|
|
|
/* --------- 常量及成员变量的设计 几乎与HashMap相差无几 -------- */
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* 最大容量
|
|
|
|
|
*/
|
|
|
|
|
private static final int MAXIMUM_CAPACITY = 1 << 30;
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* 默认初始容量
|
|
|
|
|
*/
|
|
|
|
|
private static final int DEFAULT_CAPACITY = 16;
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* 单个数组最大容量
|
|
|
|
|
*/
|
|
|
|
|
static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* 默认并发等级,也就分成多少个单独上锁的区域
|
|
|
|
|
*/
|
|
|
|
|
private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* 扩容因子
|
|
|
|
|
*/
|
|
|
|
|
private static final float LOAD_FACTOR = 0.75f;
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
*
|
|
|
|
|
*/
|
|
|
|
|
transient volatile Node<K,V>[] table;
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
*
|
|
|
|
|
*/
|
|
|
|
|
private transient volatile Node<K,V>[] nextTable;
|
|
|
|
|
|
|
|
|
|
/* --------- 系列构造方法,依然推荐在初始化时根据实际情况设置好初始容量 -------- */
|
|
|
|
|
public ConcurrentHashMap() {
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
public ConcurrentHashMap(int initialCapacity) {
|
|
|
|
|
if (initialCapacity < 0)
|
|
|
|
|
throw new IllegalArgumentException();
|
|
|
|
|
int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
|
|
|
|
|
MAXIMUM_CAPACITY :
|
|
|
|
|
tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
|
|
|
|
|
this.sizeCtl = cap;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
|
|
|
|
|
this.sizeCtl = DEFAULT_CAPACITY;
|
|
|
|
|
putAll(m);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
public ConcurrentHashMap(int initialCapacity, float loadFactor) {
|
|
|
|
|
this(initialCapacity, loadFactor, 1);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
public ConcurrentHashMap(int initialCapacity,
|
|
|
|
|
float loadFactor, int concurrencyLevel) {
|
|
|
|
|
if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
|
|
|
|
|
throw new IllegalArgumentException();
|
|
|
|
|
if (initialCapacity < concurrencyLevel) // Use at least as many bins
|
|
|
|
|
initialCapacity = concurrencyLevel; // as estimated threads
|
|
|
|
|
long size = (long)(1.0 + (long)initialCapacity / loadFactor);
|
|
|
|
|
int cap = (size >= (long)MAXIMUM_CAPACITY) ?
|
|
|
|
|
MAXIMUM_CAPACITY : tableSizeFor((int)size);
|
|
|
|
|
this.sizeCtl = cap;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* ConcurrentHashMap 的核心就在于其put元素时 利用synchronized局部锁 和
|
|
|
|
|
* CAS乐观锁机制 大大提升了本集合的并发能力,比JDK7的分段锁性能更强
|
|
|
|
|
*/
|
|
|
|
|
public V put(K key, V value) {
|
|
|
|
|
return putVal(key, value, false);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* 当前指定数组位置无元素时,使用CAS操作 将 Node键值对 放入对应的数组下标。
|
|
|
|
|
* 出现hash冲突,则用synchronized局部锁锁住,若当前hash对应的节点是链表的头节点,遍历链表,
|
|
|
|
|
* 若找到对应的node节点,则修改node节点的val,否则在链表末尾添加node节点;倘若当前节点是
|
|
|
|
|
* 红黑树的根节点,在树结构上遍历元素,更新或增加节点
|
|
|
|
|
*/
|
|
|
|
|
final V putVal(K key, V value, boolean onlyIfAbsent) {
|
|
|
|
|
if (key == null || value == null) throw new NullPointerException();
|
|
|
|
|
int hash = spread(key.hashCode());
|
|
|
|
|
int binCount = 0;
|
|
|
|
|
for (Node<K,V>[] tab = table;;) {
|
|
|
|
|
Node<K,V> f; int n, i, fh;
|
|
|
|
|
if (tab == null || (n = tab.length) == 0)
|
|
|
|
|
tab = initTable();
|
|
|
|
|
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
|
|
|
|
|
// 注意!这是一个CAS的方法,将新节点放入指定位置,不用加锁阻塞线程
|
|
|
|
|
// 也能保证并发安全
|
|
|
|
|
if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value, null)))
|
|
|
|
|
break; // no lock when adding to empty bin
|
|
|
|
|
}
|
|
|
|
|
// 当前Map在扩容,先协助扩容,在更新值
|
|
|
|
|
else if ((fh = f.hash) == MOVED)
|
|
|
|
|
tab = helpTransfer(tab, f);
|
|
|
|
|
else { // hash冲突
|
|
|
|
|
V oldVal = null;
|
|
|
|
|
// 局部锁,有效减少锁竞争的发生
|
|
|
|
|
synchronized (f) { // f 是 链表头节点/红黑树根节点
|
|
|
|
|
if (tabAt(tab, i) == f) {
|
|
|
|
|
if (fh >= 0) {
|
|
|
|
|
binCount = 1;
|
|
|
|
|
for (Node<K,V> e = f;; ++binCount) {
|
|
|
|
|
K ek;
|
|
|
|
|
// 若节点已经存在,修改该节点的值
|
|
|
|
|
if (e.hash == hash && ((ek = e.key) == key ||
|
|
|
|
|
(ek != null && key.equals(ek)))) {
|
|
|
|
|
oldVal = e.val;
|
|
|
|
|
if (!onlyIfAbsent)
|
|
|
|
|
e.val = value;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
Node<K,V> pred = e;
|
|
|
|
|
// 节点不存在,添加到链表末尾
|
|
|
|
|
if ((e = e.next) == null) {
|
|
|
|
|
pred.next = new Node<K,V>(hash, key,
|
|
|
|
|
value, null);
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
// 如果该节点是 红黑树节点
|
|
|
|
|
else if (f instanceof TreeBin) {
|
|
|
|
|
Node<K,V> p;
|
|
|
|
|
binCount = 2;
|
|
|
|
|
if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
|
|
|
|
|
value)) != null) {
|
|
|
|
|
oldVal = p.val;
|
|
|
|
|
if (!onlyIfAbsent)
|
|
|
|
|
p.val = value;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
// 链表节点超过了8,链表转为红黑树
|
|
|
|
|
if (binCount != 0) {
|
|
|
|
|
if (binCount >= TREEIFY_THRESHOLD)
|
|
|
|
|
treeifyBin(tab, i);
|
|
|
|
|
if (oldVal != null)
|
|
|
|
|
return oldVal;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
// 统计节点个数,检查是否需要resize
|
|
|
|
|
addCount(1L, binCount);
|
|
|
|
|
return null;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
**与 JDK1.7 在同步机制上的区别** 总结如下:
|
|
|
|
|
JDK1.7 使用的是分段锁机制,其内部类 Segment 继承了 ReentrantLock,将 容器内的数组划分成多段区域,每个区域对应一把锁,相比于 HashTable 确实提升了不少并发能力,但在数据量庞大的情况下,性能依然不容乐观,只能通过不断的增加锁来维持并发性能。而 JDK1.8 则使用了 CAS 乐观锁 + synchronized 局部锁 处理并发问题,锁粒度更细,即使数据量很大也能保证良好的并发性。
|