You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
samples/web/gallery/lib/demo/calculator/logic.dart

344 lines
11 KiB

// Copyright 2016 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
/// A token that composes an expression. There are several kinds of tokens
/// that represent arithmetic operation symbols, numbers and pieces of numbers.
/// We need to represent pieces of numbers because the user may have only
/// entered a partial expression so far.
class ExpressionToken {
ExpressionToken(this.stringRep);
final String stringRep;
@override
String toString() => stringRep;
}
/// A token that represents a number.
class NumberToken extends ExpressionToken {
NumberToken(String stringRep, this.number) : super(stringRep);
NumberToken.fromNumber(num number) : this('$number', number);
final num number;
}
/// A token that represents an integer.
class IntToken extends NumberToken {
IntToken(String stringRep) : super(stringRep, int.parse(stringRep));
}
/// A token that represents a floating point number.
class FloatToken extends NumberToken {
FloatToken(String stringRep) : super(stringRep, _parse(stringRep));
static double _parse(String stringRep) {
String toParse = stringRep;
if (toParse.startsWith('.'))
toParse = '0' + toParse;
if (toParse.endsWith('.'))
toParse = toParse + '0';
return double.parse(toParse);
}
}
/// A token that represents a number that is the result of a computation.
class ResultToken extends NumberToken {
ResultToken(num number) : super.fromNumber(round(number));
/// rounds `number` to 14 digits of precision. A double precision
/// floating point number is guaranteed to have at least this many
/// decimal digits of precision.
static num round(num number) {
if (number is int)
return number;
return double.parse(number.toStringAsPrecision(14));
}
}
/// A token that represents the unary minus prefix.
class LeadingNegToken extends ExpressionToken {
LeadingNegToken() : super('-');
}
enum Operation { Addition, Subtraction, Multiplication, Division }
/// A token that represents an arithmetic operation symbol.
class OperationToken extends ExpressionToken {
OperationToken(this.operation)
: super(opString(operation));
Operation operation;
static String opString(Operation operation) {
switch (operation) {
case Operation.Addition:
return ' + ';
case Operation.Subtraction:
return ' - ';
case Operation.Multiplication:
return ' \u00D7 ';
case Operation.Division:
return ' \u00F7 ';
}
assert(operation != null);
return null;
}
}
/// As the user taps different keys the current expression can be in one
/// of several states.
enum ExpressionState {
/// The expression is empty or an operation symbol was just entered.
/// A new number must be started now.
Start,
/// A minus sign was entered as a leading negative prefix.
LeadingNeg,
/// We are in the midst of a number without a point.
Number,
/// A point was just entered.
Point,
/// We are in the midst of a number with a point.
NumberWithPoint,
/// A result is being displayed
Result,
}
/// An expression that can be displayed in a calculator. It is the result
/// of a sequence of user entries. It is represented by a sequence of tokens.
///
/// The tokens are not in one to one correspondence with the key taps because we
/// use one token per number, not one token per digit. A [CalcExpression] is
/// immutable. The `append*` methods return a new [CalcExpression] that
/// represents the appropriate expression when one additional key tap occurs.
class CalcExpression {
CalcExpression(this._list, this.state);
CalcExpression.empty()
: this(<ExpressionToken>[], ExpressionState.Start);
CalcExpression.result(FloatToken result)
: _list = <ExpressionToken>[],
state = ExpressionState.Result {
_list.add(result);
}
/// The tokens comprising the expression.
final List<ExpressionToken> _list;
/// The state of the expression.
final ExpressionState state;
/// The string representation of the expression. This will be displayed
/// in the calculator's display panel.
@override
String toString() {
final StringBuffer buffer = StringBuffer('');
buffer.writeAll(_list);
return buffer.toString();
}
/// Append a digit to the current expression and return a new expression
/// representing the result. Returns null to indicate that it is not legal
/// to append a digit in the current state.
CalcExpression appendDigit(int digit) {
ExpressionState newState = ExpressionState.Number;
ExpressionToken newToken;
final List<ExpressionToken> outList = _list.toList();
switch (state) {
case ExpressionState.Start:
// Start a new number with digit.
newToken = IntToken('$digit');
break;
case ExpressionState.LeadingNeg:
// Replace the leading neg with a negative number starting with digit.
outList.removeLast();
newToken = IntToken('-$digit');
break;
case ExpressionState.Number:
final ExpressionToken last = outList.removeLast();
newToken = IntToken('${last.stringRep}$digit');
break;
case ExpressionState.Point:
case ExpressionState.NumberWithPoint:
final ExpressionToken last = outList.removeLast();
newState = ExpressionState.NumberWithPoint;
newToken = FloatToken('${last.stringRep}$digit');
break;
case ExpressionState.Result:
// Cannot enter a number now
return null;
}
outList.add(newToken);
return CalcExpression(outList, newState);
}
/// Append a point to the current expression and return a new expression
/// representing the result. Returns null to indicate that it is not legal
/// to append a point in the current state.
CalcExpression appendPoint() {
ExpressionToken newToken;
final List<ExpressionToken> outList = _list.toList();
switch (state) {
case ExpressionState.Start:
newToken = FloatToken('.');
break;
case ExpressionState.LeadingNeg:
case ExpressionState.Number:
final ExpressionToken last = outList.removeLast();
newToken = FloatToken(last.stringRep + '.');
break;
case ExpressionState.Point:
case ExpressionState.NumberWithPoint:
case ExpressionState.Result:
// Cannot enter a point now
return null;
}
outList.add(newToken);
return CalcExpression(outList, ExpressionState.Point);
}
/// Append an operation symbol to the current expression and return a new
/// expression representing the result. Returns null to indicate that it is not
/// legal to append an operation symbol in the current state.
CalcExpression appendOperation(Operation op) {
switch (state) {
case ExpressionState.Start:
case ExpressionState.LeadingNeg:
case ExpressionState.Point:
// Cannot enter operation now.
return null;
case ExpressionState.Number:
case ExpressionState.NumberWithPoint:
case ExpressionState.Result:
break;
}
final List<ExpressionToken> outList = _list.toList();
outList.add(OperationToken(op));
return CalcExpression(outList, ExpressionState.Start);
}
/// Append a leading minus sign to the current expression and return a new
/// expression representing the result. Returns null to indicate that it is not
/// legal to append a leading minus sign in the current state.
CalcExpression appendLeadingNeg() {
switch (state) {
case ExpressionState.Start:
break;
case ExpressionState.LeadingNeg:
case ExpressionState.Point:
case ExpressionState.Number:
case ExpressionState.NumberWithPoint:
case ExpressionState.Result:
// Cannot enter leading neg now.
return null;
}
final List<ExpressionToken> outList = _list.toList();
outList.add(LeadingNegToken());
return CalcExpression(outList, ExpressionState.LeadingNeg);
}
/// Append a minus sign to the current expression and return a new expression
/// representing the result. Returns null to indicate that it is not legal
/// to append a minus sign in the current state. Depending on the current
/// state the minus sign will be interpreted as either a leading negative
/// sign or a subtraction operation.
CalcExpression appendMinus() {
switch (state) {
case ExpressionState.Start:
return appendLeadingNeg();
case ExpressionState.LeadingNeg:
case ExpressionState.Point:
case ExpressionState.Number:
case ExpressionState.NumberWithPoint:
case ExpressionState.Result:
return appendOperation(Operation.Subtraction);
default:
return null;
}
}
/// Computes the result of the current expression and returns a new
/// ResultExpression containing the result. Returns null to indicate that
/// it is not legal to compute a result in the current state.
CalcExpression computeResult() {
switch (state) {
case ExpressionState.Start:
case ExpressionState.LeadingNeg:
case ExpressionState.Point:
case ExpressionState.Result:
// Cannot compute result now.
return null;
case ExpressionState.Number:
case ExpressionState.NumberWithPoint:
break;
}
// We make a copy of _list because CalcExpressions are supposed to
// be immutable.
final List<ExpressionToken> list = _list.toList();
// We obey order-of-operations by computing the sum of the 'terms',
// where a "term" is defined to be a sequence of numbers separated by
// multiplication or division symbols.
num currentTermValue = removeNextTerm(list);
while (list.isNotEmpty) {
final OperationToken opToken = list.removeAt(0);
final num nextTermValue = removeNextTerm(list);
switch (opToken.operation) {
case Operation.Addition:
currentTermValue += nextTermValue;
break;
case Operation.Subtraction:
currentTermValue -= nextTermValue;
break;
case Operation.Multiplication:
case Operation.Division:
// Logic error.
assert(false);
}
}
final List<ExpressionToken> outList = <ExpressionToken>[
ResultToken(currentTermValue),
];
return CalcExpression(outList, ExpressionState.Result);
}
/// Removes the next "term" from `list` and returns its numeric value.
/// A "term" is a sequence of number tokens separated by multiplication
/// and division symbols.
static num removeNextTerm(List<ExpressionToken> list) {
assert(list != null && list.isNotEmpty);
final NumberToken firstNumToken = list.removeAt(0);
num currentValue = firstNumToken.number;
while (list.isNotEmpty) {
bool isDivision = false;
final OperationToken nextOpToken = list.first;
switch (nextOpToken.operation) {
case Operation.Addition:
case Operation.Subtraction:
// We have reached the end of the current term
return currentValue;
case Operation.Multiplication:
break;
case Operation.Division:
isDivision = true;
}
// Remove the operation token.
list.removeAt(0);
// Remove the next number token.
final NumberToken nextNumToken = list.removeAt(0);
final num nextNumber = nextNumToken.number;
if (isDivision)
currentValue /= nextNumber;
else
currentValue *= nextNumber;
}
return currentValue;
}
}