// Copyright 2018 the Charts project authors. Please see the AUTHORS file // for details. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /// Example of using disjoint measure axes to render 4 series of lines with /// separate scales. The general use case for this type of chart is to show /// differences in the trends of the data, without comparing their absolute /// values. /// /// Disjoint measure axes will be used to scale the series associated with them, /// but they will not render any tick elements on either side of the chart. // EXCLUDE_FROM_GALLERY_DOCS_START import 'dart:collection' show LinkedHashMap; import 'dart:math'; // EXCLUDE_FROM_GALLERY_DOCS_END import 'package:charts_flutter/flutter.dart' as charts; import 'package:flutter_web/material.dart'; class DisjointMeasureAxisLineChart extends StatelessWidget { final List seriesList; final bool animate; DisjointMeasureAxisLineChart(this.seriesList, {this.animate}); /// Creates a [LineChart] with sample data and no transition. factory DisjointMeasureAxisLineChart.withSampleData() { return new DisjointMeasureAxisLineChart( _createSampleData(), // Disable animations for image tests. animate: false, ); } // EXCLUDE_FROM_GALLERY_DOCS_START // This section is excluded from being copied to the gallery. // It is used for creating random series data to demonstrate animation in // the example app only. factory DisjointMeasureAxisLineChart.withRandomData() { return new DisjointMeasureAxisLineChart(_createRandomData()); } /// Create random data. static List> _createRandomData() { final random = new Random(); // The first three series contain similar data with different magnitudes. // This demonstrates the ability to graph the trends in each series relative // to each other, without the largest magnitude series compressing the // smallest. final myFakeDesktopData = [ new LinearClicks(0, clickCount: random.nextInt(100)), new LinearClicks(1, clickCount: random.nextInt(100)), new LinearClicks(2, clickCount: random.nextInt(100)), new LinearClicks(3, clickCount: random.nextInt(100)), ]; final myFakeTabletData = [ new LinearClicks(0, clickCount: random.nextInt(100) * 100), new LinearClicks(1, clickCount: random.nextInt(100) * 100), new LinearClicks(2, clickCount: random.nextInt(100) * 100), new LinearClicks(3, clickCount: random.nextInt(100) * 100), ]; final myFakeMobileData = [ new LinearClicks(0, clickCount: random.nextInt(100) * 1000), new LinearClicks(1, clickCount: random.nextInt(100) * 1000), new LinearClicks(2, clickCount: random.nextInt(100) * 1000), new LinearClicks(3, clickCount: random.nextInt(100) * 1000), ]; // The fourth series renders with decimal values, representing a very // different sort ratio-based data. If this was on the same axis as any of // the other series, it would be squashed near zero. final myFakeClickRateData = [ new LinearClicks(0, clickRate: .25), new LinearClicks(1, clickRate: .65), new LinearClicks(2, clickRate: .50), new LinearClicks(3, clickRate: .30), ]; return [ // We render an empty series on the primary measure axis to ensure that // the axis itself gets rendered. This helps us draw the gridlines on the // chart. new charts.Series( id: 'Fake Series', domainFn: (LinearClicks clickCount, _) => clickCount.year, measureFn: (LinearClicks clickCount, _) => clickCount.clickCount, data: []), new charts.Series( id: 'Desktop', colorFn: (_, __) => charts.MaterialPalette.blue.shadeDefault, domainFn: (LinearClicks clickCount, _) => clickCount.year, measureFn: (LinearClicks clickCount, _) => clickCount.clickCount, data: myFakeDesktopData, ) // Set the 'Desktop' series to use a disjoint axis. ..setAttribute(charts.measureAxisIdKey, 'axis 1'), new charts.Series( id: 'Tablet', colorFn: (_, __) => charts.MaterialPalette.red.shadeDefault, domainFn: (LinearClicks clickCount, _) => clickCount.year, measureFn: (LinearClicks clickCount, _) => clickCount.clickCount, data: myFakeTabletData, ) // Set the 'Tablet' series to use a disjoint axis. ..setAttribute(charts.measureAxisIdKey, 'axis 2'), new charts.Series( id: 'Mobile', colorFn: (_, __) => charts.MaterialPalette.green.shadeDefault, domainFn: (LinearClicks clickCount, _) => clickCount.year, measureFn: (LinearClicks clickCount, _) => clickCount.clickCount, data: myFakeMobileData, ) // Set the 'Mobile' series to use a disjoint axis. ..setAttribute(charts.measureAxisIdKey, 'axis 3'), new charts.Series( id: 'Click Rate', colorFn: (_, __) => charts.MaterialPalette.purple.shadeDefault, domainFn: (LinearClicks clickCount, _) => clickCount.year, measureFn: (LinearClicks clickCount, _) => clickCount.clickCount, data: myFakeClickRateData, ) // Set the 'Click Rate' series to use a disjoint axis. ..setAttribute(charts.measureAxisIdKey, 'axis 4'), ]; } // EXCLUDE_FROM_GALLERY_DOCS_END @override Widget build(BuildContext context) { return new charts.LineChart(seriesList, animate: animate, // Configure a primary measure axis that will render gridlines across // the chart. This axis uses fake ticks with no labels to ensure that we // get 5 grid lines. // // We do this because disjoint measure axes do not draw any tick // elements on the chart. primaryMeasureAxis: new charts.NumericAxisSpec( tickProviderSpec: new charts.StaticNumericTickProviderSpec( // Create the ticks to be used the domain axis. >[ new charts.TickSpec(0, label: ''), new charts.TickSpec(1, label: ''), new charts.TickSpec(2, label: ''), new charts.TickSpec(3, label: ''), new charts.TickSpec(4, label: ''), ], )), // Create one disjoint measure axis per series on the chart. // // Disjoint measure axes will be used to scale the rendered data, // without drawing any tick elements on either side of the chart. disjointMeasureAxes: new LinkedHashMap.from({ 'axis 1': new charts.NumericAxisSpec(), 'axis 2': new charts.NumericAxisSpec(), 'axis 3': new charts.NumericAxisSpec(), 'axis 4': new charts.NumericAxisSpec(), })); } /// Create one series with sample hard coded data. static List> _createSampleData() { // The first three series contain similar data with different magnitudes. // This demonstrates the ability to graph the trends in each series relative // to each other, without the largest magnitude series compressing the // smallest. final myFakeDesktopData = [ new LinearClicks(0, clickCount: 25), new LinearClicks(1, clickCount: 125), new LinearClicks(2, clickCount: 920), new LinearClicks(3, clickCount: 375), ]; final myFakeTabletData = [ new LinearClicks(0, clickCount: 375), new LinearClicks(1, clickCount: 1850), new LinearClicks(2, clickCount: 9700), new LinearClicks(3, clickCount: 5000), ]; final myFakeMobileData = [ new LinearClicks(0, clickCount: 5000), new LinearClicks(1, clickCount: 25000), new LinearClicks(2, clickCount: 100000), new LinearClicks(3, clickCount: 75000), ]; // The fourth series renders with decimal values, representing a very // different sort ratio-based data. If this was on the same axis as any of // the other series, it would be squashed near zero. final myFakeClickRateData = [ new LinearClicks(0, clickRate: .25), new LinearClicks(1, clickRate: .65), new LinearClicks(2, clickRate: .50), new LinearClicks(3, clickRate: .30), ]; return [ // We render an empty series on the primary measure axis to ensure that // the axis itself gets rendered. This helps us draw the gridlines on the // chart. new charts.Series( id: 'Fake Series', domainFn: (LinearClicks clickCount, _) => clickCount.year, measureFn: (LinearClicks clickCount, _) => clickCount.clickCount, data: []), new charts.Series( id: 'Desktop', colorFn: (_, __) => charts.MaterialPalette.blue.shadeDefault, domainFn: (LinearClicks clickCount, _) => clickCount.year, measureFn: (LinearClicks clickCount, _) => clickCount.clickCount, data: myFakeDesktopData, ) // Set the 'Desktop' series to use a disjoint axis. ..setAttribute(charts.measureAxisIdKey, 'axis 1'), new charts.Series( id: 'Tablet', colorFn: (_, __) => charts.MaterialPalette.red.shadeDefault, domainFn: (LinearClicks clickCount, _) => clickCount.year, measureFn: (LinearClicks clickCount, _) => clickCount.clickCount, data: myFakeTabletData, ) // Set the 'Tablet' series to use a disjoint axis. ..setAttribute(charts.measureAxisIdKey, 'axis 2'), new charts.Series( id: 'Mobile', colorFn: (_, __) => charts.MaterialPalette.green.shadeDefault, domainFn: (LinearClicks clickCount, _) => clickCount.year, measureFn: (LinearClicks clickCount, _) => clickCount.clickCount, data: myFakeMobileData, ) // Set the 'Mobile' series to use a disjoint axis. ..setAttribute(charts.measureAxisIdKey, 'axis 3'), new charts.Series( id: 'Click Rate', colorFn: (_, __) => charts.MaterialPalette.purple.shadeDefault, domainFn: (LinearClicks clickCount, _) => clickCount.year, measureFn: (LinearClicks clickCount, _) => clickCount.clickRate, data: myFakeClickRateData, ) // Set the 'Click Rate' series to use a disjoint axis. ..setAttribute(charts.measureAxisIdKey, 'axis 4'), ]; } } /// Sample linear data type. class LinearClicks { final int year; final int clickCount; final double clickRate; LinearClicks(this.year, {this.clickCount = null, this.clickRate = null}); }