package engine import ( "bytes" "fmt" "log" "text/template" "github.com/Masterminds/sprig" chartutil "github.com/kubernetes/helm/pkg/chart" "github.com/kubernetes/helm/pkg/proto/hapi/chart" ) // Engine is an implementation of 'cmd/tiller/environment'.Engine that uses Go templates. type Engine struct { // FuncMap contains the template functions that will be passed to each // render call. This may only be modified before the first call to Render. FuncMap template.FuncMap } // New creates a new Go template Engine instance. // // The FuncMap is initialized here. You may modify the FuncMap _prior to_ the // first invocation of Render. // // The FuncMap sets all of the Sprig functions except for those that provide // access to the underlying OS (env, expandenv). func New() *Engine { f := sprig.TxtFuncMap() delete(f, "env") delete(f, "expandenv") return &Engine{ FuncMap: f, } } // Render takes a chart, optional values, and attempts to render the Go templates. // // Render can be called repeatedly on the same engine. // // This will look in the chart's 'templates' data (e.g. the 'templates/' directory) // and attempt to render the templates there using the values passed in. // // Values are scoped to their templates. A dependency template will not have // access to the values set for its parent. If chart "foo" includes chart "bar", // "bar" will not have access to the values for "foo". // // Values are passed through the templates according to scope. If the top layer // chart includes the chart foo, which includes the chart bar, the values map // will be examined for a table called "foo". If "foo" is found in vals, // that section of the values will be passed into the "foo" chart. And if that // section contains a value named "bar", that value will be passed on to the // bar chart during render time. // // Values are coalesced together using the fillowing rules: // // - Values in a higher level chart always override values in a lower-level // dependency chart // - Scalar values and arrays are replaced, maps are merged // - A chart has access to all of the variables for it, as well as all of // the values destined for its dependencies. func (e *Engine) Render(chrt *chart.Chart, vals *chart.Config) (map[string]string, error) { var cvals chartutil.Values // Parse values if not nil. We merge these at the top level because // the passed-in values are in the same namespace as the parent chart. if vals != nil { evals, err := chartutil.ReadValues([]byte(vals.Raw)) if err != nil { return map[string]string{}, err } cvals = coalesceValues(chrt, evals) } // Render the charts tmap := allTemplates(chrt, cvals) return e.render(tmap) } // renderable is an object that can be rendered. type renderable struct { // tpl is the current template. tpl string // vals are the values to be supplied to the template. vals chartutil.Values } // render takes a map of templates/values and renders them. func (e *Engine) render(tpls map[string]renderable) (map[string]string, error) { // Basically, what we do here is start with an empty parent template and then // build up a list of templates -- one for each file. Once all of the templates // have been parsed, we loop through again and execute every template. // // The idea with this process is to make it possible for more complex templates // to share common blocks, but to make the entire thing feel like a file-based // template engine. t := template.New("gotpl") files := []string{} for fname, r := range tpls { t = t.New(fname).Funcs(e.FuncMap) if _, err := t.Parse(r.tpl); err != nil { return map[string]string{}, fmt.Errorf("parse error in %q: %s", fname, err) } files = append(files, fname) } rendered := make(map[string]string, len(files)) var buf bytes.Buffer for _, file := range files { // log.Printf("Exec %s with %v (%s)", file, tpls[file].vals, tpls[file].tpl) if err := t.ExecuteTemplate(&buf, file, tpls[file].vals); err != nil { return map[string]string{}, fmt.Errorf("render error in %q: %s", file, err) } rendered[file] = buf.String() buf.Reset() } return rendered, nil } // allTemplates returns all templates for a chart and its dependencies. // // As it goes, it also prepares the values in a scope-sensitive manner. func allTemplates(c *chart.Chart, vals chartutil.Values) map[string]renderable { templates := map[string]renderable{} recAllTpls(c, templates, vals, true) return templates } // recAllTpls recurses through the templates in a chart. // // As it recurses, it also sets the values to be appropriate for the template // scope. func recAllTpls(c *chart.Chart, templates map[string]renderable, parentVals chartutil.Values, top bool) { var pvals chartutil.Values if top { // If this is the top of the rendering tree, assume that parentVals // is already resolved to the authoritative values. pvals = parentVals } else if c.Metadata != nil && c.Metadata.Name != "" { // An error indicates that the table doesn't exist. So we leave it as // an empty map. tmp, err := parentVals.Table(c.Metadata.Name) if err == nil { pvals = tmp } } cvals := coalesceValues(c, pvals) //log.Printf("racAllTpls values: %v", cvals) for _, child := range c.Dependencies { recAllTpls(child, templates, cvals, false) } for _, t := range c.Templates { templates[t.Name] = renderable{ tpl: string(t.Data), vals: cvals, } } } // coalesceValues builds up a values map for a particular chart. // // Values in v will override the values in the chart. func coalesceValues(c *chart.Chart, v chartutil.Values) chartutil.Values { // If there are no values in the chart, we just return the given values if c.Values == nil { return v } nv, err := chartutil.ReadValues([]byte(c.Values.Raw)) if err != nil { // On error, we return just the overridden values. // FIXME: We should log this error. It indicates that the TOML data // did not parse. log.Printf("error reading default values: %s", err) return v } for k, val := range v { // NOTE: We could block coalesce on cases where nv does not explicitly // declare a value. But that forces the chart author to explicitly // set a default for every template param. We want to preserve the // possibility of "hidden" parameters. if istable(val) { if inmap, ok := nv[k]; ok && istable(inmap) { coalesceTables(inmap.(map[string]interface{}), val.(map[string]interface{})) } else if ok { log.Printf("Cannot copy table into non-table value for %s (%v)", k, inmap) } else { // The parent table does not have a key entry for this item, // so we can safely set it. This is necessary for nested charts. log.Printf("Copying %s into map %v", k, nv) nv[k] = val } } else { nv[k] = val } } return nv } // coalesceTables merges a source map into a destination map. func coalesceTables(dst, src map[string]interface{}) { for key, val := range src { if istable(val) { if innerdst, ok := dst[key]; !ok { dst[key] = val } else if istable(innerdst) { coalesceTables(innerdst.(map[string]interface{}), val.(map[string]interface{})) } else { log.Printf("Cannot overwrite table with non table for %s (%v)", key, val) } continue } else if dv, ok := dst[key]; ok && istable(dv) { log.Printf("Destination for %s is a table. Ignoring non-table value %v", key, val) continue } dst[key] = val } } // istable is a special-purpose function to see if the present thing matches the definition of a TOML table. func istable(v interface{}) bool { _, ok := v.(map[string]interface{}) return ok }