--- id: edge title: Edges --- `Edge` represents an edge between nodes. ## Basic `Edge` is an object representing a connection between nodes with some additional properties. An edge object contains three attributes: **label**, **color**, and **style**. They mirror the corresponding Graphviz edge attributes. ```python from diagrams import Cluster, Diagram, Edge from diagrams.onprem.analytics import Spark from diagrams.onprem.compute import Server from diagrams.onprem.database import PostgreSQL from diagrams.onprem.inmemory import Redis from diagrams.onprem.aggregator import Fluentd from diagrams.onprem.monitoring import Grafana, Prometheus from diagrams.onprem.network import Nginx from diagrams.onprem.queue import Kafka with Diagram(name="Advanced Web Service with On-Premises (colored)", show=False): ingress = Nginx("ingress") metrics = Prometheus("metric") metrics << Edge(color="firebrick", style="dashed") << Grafana("monitoring") with Cluster("Service Cluster"): grpcsvc = [ Server("grpc1"), Server("grpc2"), Server("grpc3")] with Cluster("Sessions HA"): primary = Redis("session") primary \ - Edge(color="brown", style="dashed") \ - Redis("replica") \ << Edge(label="collect") \ << metrics grpcsvc >> Edge(color="brown") >> primary with Cluster("Database HA"): primary = PostgreSQL("users") primary \ - Edge(color="brown", style="dotted") \ - PostgreSQL("replica") \ << Edge(label="collect") \ << metrics grpcsvc >> Edge(color="black") >> primary aggregator = Fluentd("logging") aggregator \ >> Edge(label="parse") \ >> Kafka("stream") \ >> Edge(color="black", style="bold") \ >> Spark("analytics") ingress \ >> Edge(color="darkgreen") \ << grpcsvc \ >> Edge(color="darkorange") \ >> aggregator ``` ![advanced web service with on-premise diagram colored](/img/advanced_web_service_with_on-premise_colored.png) ## Less Edges As you can see on the previous graph the edges can quickly become noisy. Below are two examples to solve this problem. One approach is to get creative with the Node class to create blank placeholders, together with named nodes within Clusters, and then only pointing to single named elements within those Clusters. Compare the output below to the example output above . ```python from diagrams import Cluster, Diagram, Node from diagrams.onprem.analytics import Spark from diagrams.onprem.compute import Server from diagrams.onprem.database import PostgreSQL from diagrams.onprem.inmemory import Redis from diagrams.onprem.aggregator import Fluentd from diagrams.onprem.monitoring import Grafana, Prometheus from diagrams.onprem.network import Nginx from diagrams.onprem.queue import Kafka with Diagram("\nAdvanced Web Service with On-Premise Less edges", show=False) as diag: ingress = Nginx("ingress") with Cluster("Service Cluster"): serv1 = Server("grpc1") serv2 = Server("grpc2") serv3 = Server("grpc3") with Cluster(""): blankHA = Node("", shape="plaintext", width="0", height="0") metrics = Prometheus("metric") metrics << Grafana("monitoring") aggregator = Fluentd("logging") blankHA >> aggregator >> Kafka("stream") >> Spark("analytics") with Cluster("Database HA"): db = PostgreSQL("users") db - PostgreSQL("replica") << metrics blankHA >> db with Cluster("Sessions HA"): sess = Redis("session") sess - Redis("replica") << metrics blankHA >> sess ingress >> serv2 >> blankHA diag ``` ![advanced web service with on-premise less edges](/img/advanced_web_service_with_on-premise_less_edges.png) ## Merged Edges Yet another option is to set the graph_attr dictionary key "concentrate" to "true". Note the following restrictions: 1. the Edge must end at the same headport 2. This only works when the "splines" graph_attr key is set to the value "spline". It has no effect when the value was set to "ortho", which is the default for the diagrams library. 3. this will only work with the "dot" layout engine, which is the default for the diagrams library. For more information see: https://graphviz.gitlab.io/doc/info/attrs.html#d:concentrate https://www.graphviz.org/pdf/dotguide.pdf Section 3.3 Concentrators ```python from diagrams import Cluster, Diagram, Edge, Node from diagrams.onprem.analytics import Spark from diagrams.onprem.compute import Server from diagrams.onprem.database import PostgreSQL from diagrams.onprem.inmemory import Redis from diagrams.onprem.aggregator import Fluentd from diagrams.onprem.monitoring import Grafana, Prometheus from diagrams.onprem.network import Nginx from diagrams.onprem.queue import Kafka graph_attr = { "concentrate": "true", "splines": "spline", } edge_attr = { "minlen":"3", } with Diagram("\n\nAdvanced Web Service with On-Premise Merged edges", show=False, graph_attr=graph_attr, edge_attr=edge_attr) as diag: ingress = Nginx("ingress") metrics = Prometheus("metric") metrics << Edge(minlen="0") << Grafana("monitoring") with Cluster("Service Cluster"): grpsrv = [ Server("grpc1"), Server("grpc2"), Server("grpc3")] blank = Node("", shape="plaintext", height="0.0", width="0.0") with Cluster("Sessions HA"): sess = Redis("session") sess - Redis("replica") << metrics with Cluster("Database HA"): db = PostgreSQL("users") db - PostgreSQL("replica") << metrics aggregator = Fluentd("logging") aggregator >> Kafka("stream") >> Spark("analytics") ingress >> [grpsrv[0], grpsrv[1], grpsrv[2],] [grpsrv[0], grpsrv[1], grpsrv[2],] - Edge(headport="w", minlen="1") - blank blank >> Edge(headport="w", minlen="2") >> [sess, db, aggregator] diag ``` ![advanced web service with on-premise merged edges](/img/advanced_web_service_with_on-premise_merged_edges.png)