# 一、硬部署 无条件,可直接硬部署MYSQL与REDIS,即可使用项目。 ## 01、安装MYSQL **一**、下载并安装mysql: ``` wget -i -c http://dev.mysql.com/get/mysql57-community-release-el7-10.noarch.rpm yum -y install mysql57-community-release-el7-10.noarch.rpm yum -y install mysql-community-server --nogpgcheck ``` **二**、启动并查看状态MySQL: ``` systemctl start mysqld.service systemctl status mysqld.service ``` **三**、查看MySQL的默认密码: ``` grep "password" /var/log/mysqld.log ``` ![](images/10.png) **四**、登录进MySQL ``` mysql -uroot -p ``` **五**、修改默认密码(设置密码需要有大小写符号组合—安全性),把下面的`my password`替换成自己的密码 ``` ALTER USER 'root'@'localhost' IDENTIFIED BY 'my password'; ``` **六**、开启远程访问 (把下面的`my password`替换成自己的密码) ``` grant all privileges on *.* to 'root'@'%' identified by 'my password' with grant option; flush privileges; exit ``` **七**、在云服务上增加MySQL的端口(打开防火墙对应端口) ## 02、安装REDIS **一**、安装redis: ``` yum -y update yum -y install redis ``` **二**、修改配置文件 ``` vi /etc/redis.conf ``` ``` protected-mode no port 6379 timeout 0 save 900 1 save 300 10 save 60 10000 rdbcompression yes dbfilename dump.rdb appendonly yes appendfsync everysec requirepass austin ``` **三**、启动redis ``` systemctl start redis service redis start ``` **四**、检查redis状态 ``` sudo systemctl status redis ``` **五**、连接redis ``` # 默认端口号6379 redis-cli # 验证密码 AUTH austin ``` **六**、在云服务上增加Redis的端口(打开防火墙对应端口) --- # 二、DOCKER-COMPOSE方式部署 为方便管理与部署,可以选择DOCKER-COMPOSE方式部署组件,同理除了MYSQL与REDIS,其余组件都是**可选**。 ## 01、安装DOCKER和DOCKER-COMPOSE 首先我们需要安装GCC相关的环境: ``` yum -y install gcc yum -y install gcc-c++ ``` 安装Docker需要的依赖软件包: ``` yum install -y yum-utils device-mapper-persistent-data lvm2 ``` 设置国内的镜像(提高速度) ``` yum-config-manager --add-repo http://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo ``` 更新yum软件包索引: ``` yum makecache fast ``` 安装DOCKER CE(注意:Docker分为CE版和EE版,一般我们用CE版就够用了.) ``` yum -y install docker-ce ``` 启动Docker: ``` systemctl start docker ``` 下载回来的Docker版本:: ``` docker version ``` 运行以下命令以下载 Docker Compose 的当前稳定版本: ``` sudo curl -L "https://github.com/docker/compose/releases/download/1.24.1/docker-compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose #慢的话可以用这个 sudo curl -L https://get.daocloud.io/docker/compose/releases/download/1.25.1/docker-compose-`uname -s`-`uname -m` -o /usr/local/bin/docker-compose ``` 将可执行权限应用于二进制文件: ``` sudo chmod +x /usr/local/bin/docker-compose ``` 创建软链: ``` sudo ln -s /usr/local/bin/docker-compose /usr/bin/docker-compose ``` 测试是否安装成功: ``` docker-compose --version ``` (Austin项目的中间件使用docker进行部署,文件内容可以参考项目中`docker`文件夹) ## 02、安装MySql `docker-compose.yaml`文件如下 ```yaml version: '3' services: mysql: image: mysql:5.7 container_name: mysql restart: always ports: - 3306:3306 volumes: - mysql-data:/var/lib/mysql environment: MYSQL_ROOT_PASSWORD: root123_A TZ: Asia/Shanghai command: --character-set-server=utf8mb4 --collation-server=utf8mb4_unicode_ci volumes: mysql-data: ``` ``` docker-compose up -d docker ps ``` 部署后,初始化SQL为./doc/sql/austin.sql,其余SQL安装对应组件才需要 **安装文件详见./doc/docker/mysql目录** ## 03、安装REDIS 新建一个文件夹`redis`,然后在该目录下创建出`data`文件夹、`redis.conf`文件和`docker-compose.yaml`文件 `redis.conf`文件的内容如下(后面的配置可在这更改,比如requirepass 我指定的密码为`austin`) ``` protected-mode no port 6379 timeout 0 save 900 1 save 300 10 save 60 10000 rdbcompression yes dbfilename dump.rdb dir /data appendonly yes appendfsync everysec requirepass austin ``` `docker-compose.yaml`的文件内容如下: ```yaml version: '3' services: redis: image: redis:3.2 container_name: redis restart: always ports: - 6379:6379 volumes: - ./redis.conf:/usr/local/etc/redis/redis.conf:rw - ./data:/data:rw command: /bin/bash -c "redis-server /usr/local/etc/redis/redis.conf" ``` 配置的工作就完了,如果是云服务器,记得开redis端口**6379** ``` docker-compose up -d docker ps docker exec -it redis redis-cli auth austin ``` **安装文件详见./doc/docker/redis目录** ## 04、安装KAFKA(可选) 新建搭建kafka环境的`docker-compose.yml`文件,内容如下: ```yaml version: '3' services: zookeeper: image: wurstmeister/zookeeper # 原镜像`wurstmeister/zookeeper` container_name: zookeeper # 容器名为'zookeeper' volumes: # 数据卷挂载路径设置,将本机目录映射到容器目录 - "/etc/localtime:/etc/localtime" ports: # 映射端口 - "2181:2181" kafka: image: wurstmeister/kafka # 原镜像`wurstmeister/kafka` container_name: kafka # 容器名为'kafka' volumes: # 数据卷挂载路径设置,将本机目录映射到容器目录 - "/etc/localtime:/etc/localtime" environment: # 设置环境变量,相当于docker run命令中的-e KAFKA_BROKER_ID: 0 # 在kafka集群中,每个kafka都有一个BROKER_ID来区分自己 KAFKA_ADVERTISED_LISTENERS: PLAINTEXT://ip:9092 # TODO 将kafka的地址端口注册给zookeeper KAFKA_LISTENERS: PLAINTEXT://0.0.0.0:9092 # 配置kafka的监听端口 KAFKA_ZOOKEEPER_CONNECT: zookeeper:2181 KAFKA_CREATE_TOPICS: "hello_world" KAFKA_HEAP_OPTS: -Xmx1G -Xms256M ports: # 映射端口 - "9092:9092" depends_on: # 解决容器依赖启动先后问题 - zookeeper kafka-manager: image: kafkamanager/kafka-manager # 原镜像`sheepkiller/kafka-manager` container_name: kafka-manager # 容器名为'kafka-manager' environment: # 设置环境变量,相当于docker run命令中的-e ZK_HOSTS: zookeeper:2181 APPLICATION_SECRET: xxxxx KAFKA_MANAGER_AUTH_ENABLED: "true" # 开启kafka-manager权限校验 KAFKA_MANAGER_USERNAME: admin # 登陆账户 KAFKA_MANAGER_PASSWORD: 123456 # 登陆密码 ports: # 映射端口 - "9000:9000" depends_on: # 解决容器依赖启动先后问题 - kafka ``` 文件内 **// TODO 中的ip**需要改成自己的,并且如果你用的是云服务器,那需要把端口给打开。 在存放`docker-compose.yml`的目录下执行启动命令: ``` docker-compose up -d ``` 可以查看下docker镜像运行的情况: ``` docker ps ``` 进入kafka 的容器: ``` docker exec -it kafka sh ``` 创建两个topic(这里我的**topicName**就叫austinBusiness、austinTraceLog、austinRecall,你们可以改成自己的) ``` $KAFKA_HOME/bin/kafka-topics.sh --create --topic austinBusiness --partitions 1 --zookeeper zookeeper:2181 --replication-factor 1 $KAFKA_HOME/bin/kafka-topics.sh --create --topic austinTraceLog --partitions 1 --zookeeper zookeeper:2181 --replication-factor 1 $KAFKA_HOME/bin/kafka-topics.sh --create --topic austinRecall --partitions 1 --zookeeper zookeeper:2181 --replication-factor 1 ``` 查看刚创建的topic信息: ``` $KAFKA_HOME/bin/kafka-topics.sh --zookeeper zookeeper:2181 --describe --topic austinBusiness ``` **安装文件详见./doc/docker/kafka目录** ## 05、安装APOLLO(可选) ```yaml version: '2.1' services: apollo-quick-start: image: nobodyiam/apollo-quick-start container_name: apollo-quick-start depends_on: apollo-db: condition: service_healthy ports: - "8080:8080" - "8090:8090" - "8070:8070" links: - apollo-db apollo-db: image: mysql:5.7 container_name: apollo-db environment: TZ: Asia/Shanghai MYSQL_ALLOW_EMPTY_PASSWORD: 'yes' healthcheck: test: ["CMD", "mysqladmin" ,"ping", "-h", "localhost"] interval: 5s timeout: 1s retries: 10 depends_on: - apollo-dbdata ports: - "13306:3306" volumes: - ./sql:/docker-entrypoint-initdb.d volumes_from: - apollo-dbdata apollo-dbdata: image: alpine:latest container_name: apollo-dbdata volumes: - /var/lib/mysql ``` **PS: Apollo 的docker配置文件可以参考:docker/apollo/文件夹, 简单来说,在 docker/apollo/docker-quick-start/文件夹下执行docker-compose up -d 执行即可.** 目录结构最好保持一致: ![](images/11.png) 注:我的配置里更改过端口,所以我的程序`AustinApplication`写的端口为7000 ![](images/12.png) **<https://www.apolloconfig.com/#/zh/deployment/quick-start-docker>** **<https://github.com/apolloconfig/apollo/tree/master/scripts/docker-quick-start>** 部门的创建其实也是一份"配置",输入`organizations`就能把现有的部门给改掉,我新增了`boss`股东部门,大家都是我的股东。 ![](images/13.png) PS:我的namespace是`boss.austin` ![](images/14.png) apollo配置样例可看example/apollo.properties文件的内容 `dynamic-tp-apollo-dtp`它是一个apollo的namespace,存放着动态线程池的配置 动态线程池样例配置可看 dynamic-tp-apollo-dtp.yml 文件的内容 **安装文件详见./doc/docker/apollo目录** ## 06、安装PROMETHEUS和GRAFANA(可选) 存放`docker-compose.yml`的信息: ```yaml version: '2' networks: monitor: driver: bridge services: prometheus: image: prom/prometheus container_name: prometheus hostname: prometheus restart: always volumes: - ./prometheus.yml:/etc/prometheus/prometheus.yml ports: - "9090:9090" networks: - monitor alertmanager: image: prom/alertmanager container_name: alertmanager hostname: alertmanager restart: always ports: - "9093:9093" networks: - monitor grafana: image: grafana/grafana container_name: grafana hostname: grafana restart: always ports: - "3000:3000" networks: - monitor node-exporter: image: quay.io/prometheus/node-exporter container_name: node-exporter hostname: node-exporter restart: always ports: - "9100:9100" networks: - monitor cadvisor: image: google/cadvisor:latest container_name: cadvisor hostname: cadvisor restart: always volumes: - /:/rootfs:ro - /var/run:/var/run:rw - /sys:/sys:ro - /var/lib/docker/:/var/lib/docker:ro ports: - "8899:8080" networks: - monitor ``` 新建prometheus的配置文件`prometheus.yml` ```yaml global: scrape_interval: 1s evaluation_interval: 1s scrape_configs: - job_name: 'prometheus' static_configs: # TODO ip地址自己填我有相同的端口,因为是有两台机器,你们可以干掉相同的端口 - targets: ['ip:9090'] - job_name: 'cadvisor' static_configs: - targets: ['ip:8899'] - job_name: 'node' static_configs: - targets: ['ip:9100'] - job_name: 'cadvisor2' static_configs: - targets: ['ip:8899'] - job_name: 'node2' static_configs: - targets: ['ip:9100'] - job_name: 'austin' metrics_path: '/actuator/prometheus' static_configs: - targets: ['ip:8888'] ``` (**这里要注意端口,按自己配置的来,ip也要填写为自己的**) 把这份`prometheus.yml`的配置往`/etc/prometheus/prometheus.yml` 路径下**复制**一份。随后在目录下`docker-compose up -d`启动,于是我们就可以分别访问: - `http://ip:9100/metrics`( 查看服务器的指标) - `http://ip:8899/metrics`(查看docker容器的指标) - `http://ip:9090/`(prometheus的原生web-ui) - `http://ip:3000/`(Grafana开源的监控可视化组件页面) 进到Grafana首页,配置prometheus作为数据源 ![](images/15.png) 进到配置页面,写下对应的URL,然后保存就好了。 ![](images/16.png) 相关监控的模板可以在 <https://grafana.com/grafana/dashboards/> 这里查到。 ![](images/17.png) 服务器的监控直接选用**8919**的就好了 ![](images/18.png) ![](images/19.png) import后就能直接看到高大上的监控页面了: ![](images/20.png) 使用模板**893**来配置监控docker的信息: ![](images/21.png) ![](images/22.png) 选用了`4701`模板的JVM监控和`12900`SpringBoot监控(**程序代码已经接入了actuator和prometheus**)。需要在`prometheus.yml`配置下新增暴露的服务地址: ``` - job_name: 'austin' metrics_path: '/actuator/prometheus' # 采集的路径 static_configs: - targets: ['ip:port'] # todo 这里的ip和端口写自己的应用下的 ``` ![](images/23.png) ![](images/24.png) **安装文件详见./doc/docker/prometheus目录** ## 07、安装GRAYLOG(可选)-分布式日志收集框架 `docker-compose.yml`文件内容: ``` version: '3' services: mongo: image: mongo:4.2 networks: - graylog elasticsearch: image: docker.elastic.co/elasticsearch/elasticsearch-oss:7.10.2 environment: - http.host=0.0.0.0 - transport.host=localhost - network.host=0.0.0.0 - "ES_JAVA_OPTS=-Dlog4j2.formatMsgNoLookups=true -Xms512m -Xmx512m" - GRAYLOG_ROOT_TIMEZONE=Asia/Shanghai ulimits: memlock: soft: -1 hard: -1 deploy: resources: limits: memory: 1g networks: - graylog graylog: image: graylog/graylog:4.2 environment: - GRAYLOG_PASSWORD_SECRET=somepasswordpepper - GRAYLOG_ROOT_PASSWORD_SHA2=8c6976e5b5410415bde908bd4dee15dfb167a9c873fc4bb8a81f6f2ab448a918 - GRAYLOG_HTTP_EXTERNAL_URI=http://ip:9009/ # 这里注意要改ip - GRAYLOG_ROOT_TIMEZONE=Asia/Shanghai entrypoint: /usr/bin/tini -- wait-for-it elasticsearch:9200 -- /docker-entrypoint.sh networks: - graylog restart: always depends_on: - mongo - elasticsearch ports: - 9009:9000 - 1514:1514 - 1514:1514/udp - 12201:12201 - 12201:12201/udp networks: graylog: driver: bridge ``` 这个文件里唯一需要改动的就是`ip`(本来的端口是`9000`的,我由于已经占用了`9000`端口了,所以我这里把端口改成了`9009`,你们可以随意) 启动以后,我们就可以通过`ip:port`访问对应的Graylog后台地址了,默认的账号和密码是`admin/admin` ![](images/25.png) 配置下`inputs`的配置,找到`GELF UDP`,然后点击`Launch new input`,只需要填写`Title`字段,保存就完事了(其他不用动)。 ![](images/26.png) 最后配置`austin.grayLogIp`的ip即可实现分布式日志收集 **安装文件详见./doc/docker/graylog目录** ## 08、XXL-JOB(可选) `docker-compose.yaml`文件如下 ```yaml version: '3' services: austin-xxl-job: image: xuxueli/xxl-job-admin:2.3.0 container_name: xxl-job-admin restart: always ports: - "6767:8080" environment: PARAMS: '--spring.datasource.url=jdbc:mysql://ip:3306/xxl_job?useUnicode=true&characterEncoding=UTF-8&autoReconnect=true&useSSL=false&zeroDateTimeBehavior=convertToNull --spring.datasource.username=root --spring.datasource.password=root123_A' # TODO 添加MySql网络,并更改ip ``` **注意**:**ip**和**password**需要更改为自己的,并且,我开的是**6767**端口 ![](images/27.png) **安装文件详见./doc/docker/xxljob目录** ## 09、Flink(可选) 部署Flink也是直接上docker-compose就完事了,值得注意的是:我们在部署的时候需要在配置文件里**指定时区** docker-compose.yml配置内容如下: ```yaml version: "2.2" services: jobmanager: image: flink:1.16.1 ports: - "8081:8081" command: jobmanager environment: - | FLINK_PROPERTIES= jobmanager.rpc.address: jobmanager - SET_CONTAINER_TIMEZONE=true - CONTAINER_TIMEZONE=Asia/Shanghai - TZ=Asia/Shanghai taskmanager: image: flink:1.16.1 depends_on: - jobmanager command: taskmanager environment: - | FLINK_PROPERTIES= jobmanager.rpc.address: jobmanager taskmanager.numberOfTaskSlots: 2 - SET_CONTAINER_TIMEZONE=true - CONTAINER_TIMEZONE=Asia/Shanghai - TZ=Asia/Shanghai ``` **安装文件详见./doc/docker/flink目录** ## 10、HIVE(可选) 部署Hive也是直接上docker-compose就完事了 1、把仓库拉到自己的服务器上 ```shell git clone git@github.com:big-data-europe/docker-hive.git ``` 2、进入到项目的文件夹里 ```shell cd docker-hive ``` 3、微调下docker-compose文件,内容如下(主要是增加了几个通信的端口) ```yml version: "3" services: namenode: image: bde2020/hadoop-namenode:2.0.0-hadoop2.7.4-java8 volumes: - namenode:/hadoop/dfs/name environment: - CLUSTER_NAME=test env_file: - ./hadoop-hive.env ports: - "50070:50070" - "9000:9000" - "8020:8020" datanode: image: bde2020/hadoop-datanode:2.0.0-hadoop2.7.4-java8 volumes: - datanode:/hadoop/dfs/data env_file: - ./hadoop-hive.env environment: SERVICE_PRECONDITION: "namenode:50070" ports: - "50075:50075" - "50010:50010" - "50020:50020" hive-server: image: bde2020/hive:2.3.2-postgresql-metastore env_file: - ./hadoop-hive.env environment: HIVE_CORE_CONF_javax_jdo_option_ConnectionURL: "jdbc:postgresql://hive-metastore/metastore" SERVICE_PRECONDITION: "hive-metastore:9083" ports: - "10000:10000" hive-metastore: image: bde2020/hive:2.3.2-postgresql-metastore env_file: - ./hadoop-hive.env command: /opt/hive/bin/hive --service metastore environment: SERVICE_PRECONDITION: "namenode:50070 datanode:50075 hive-metastore-postgresql:5432" ports: - "9083:9083" hive-metastore-postgresql: image: bde2020/hive-metastore-postgresql:2.3.0 ports: - "5432:5432" presto-coordinator: image: shawnzhu/prestodb:0.181 ports: - "8080:8080" volumes: namenode: datanode: ``` 4、最后,我们可以连上`hive`的客户端,感受下快速安装好`hive`的成功感。 ```shell # 进入bash docker-compose exec hive-server bash # 使用beeline客户端连接 /opt/hive/bin/beeline -u jdbc:hive2://localhost:10000 ``` **安装文件详见./doc/docker/hive目录** ## 11、FLINK和HIVE融合(可选) 实时流处理的flink用的是docker-compose进行部署,而与hive融合的flink我这边是正常的姿势安装(主要是涉及的环境很多,用docker-compose就相对没那么方便了) ### 11.1 安装flink环境 1、下载`flink`压缩包 ```shell wget https://dlcdn.apache.org/flink/flink-1.16.0/flink-1.16.0-bin-scala_2.12.tgz ``` 2、解压`flink` ```shell tar -zxf flink-1.16.0-bin-scala_2.12.tgz ``` 3、修改该目录下的`conf`下的`flink-conf.yaml`文件中`rest.bind-address`配置,不然**远程访问不到**`8081`端口,将其改为`0.0.0.0` ```shell rest.bind-address: 0.0.0.0 ``` 4、将`flink`官网提到连接`hive`所需要的`jar`包下载到`flink`的`lib`目录下(一共4个) ```shell wget https://repo.maven.apache.org/maven2/org/apache/flink/flink-sql-connector-hive-2.3.9_2.12/1.16.0/flink-sql-connector-hive-2.3.9_2.12-1.16.0.jar wget https://repo.maven.apache.org/maven2/org/apache/hive/hive-exec/2.3.4/hive-exec-2.3.4.jar wget https://repo.maven.apache.org/maven2/org/apache/flink/flink-connector-hive_2.12/1.16.0/flink-connector-hive_2.12-1.16.0.jar wget https://repo.maven.apache.org/maven2/org/antlr/antlr-runtime/3.5.2/antlr-runtime-3.5.2.jar ``` 5、按照官网指示把`flink-table-planner_2.12-1.16.0.jar`和`flink-table-planner-loader-1.16.0.jar` 这俩个`jar`包移动其目录; ```shell mv $FLINK_HOME/opt/flink-table-planner_2.12-1.16.0.jar $FLINK_HOME/lib/flink-table-planner_2.12-1.16.0.jar mv $FLINK_HOME/lib/flink-table-planner-loader-1.16.0.jar $FLINK_HOME/opt/flink-table-planner-loader-1.16.0.jar ``` 6、把后续`kafka`所需要的依赖也下载到`lib`目录下 ```shell wget https://repo1.maven.org/maven2/org/apache/flink/flink-connector-kafka/1.16.0/flink-connector-kafka-1.16.0.jar wget https://repo1.maven.org/maven2/org/apache/kafka/kafka-clients/3.3.1/kafka-clients-3.3.1.jar ``` 7、把工程下的`hive-site.xml`文件拷贝到`$FLINK_HOME/conf`下,内容如下(**hive_ip**自己变动) ```xml <?xml version="1.0"?> <?xml-stylesheet type="text/xsl" href="configuration.xsl"?> <configuration> <property> <name>javax.jdo.option.ConnectionURL</name> <value>jdbc:postgresql://hive_ip:5432/metastore?createDatabaseIfNotExist=true</value> <description>JDBC connect string for a JDBC metastore</description> </property> <property> <name>javax.jdo.option.ConnectionDriverName</name> <value>org.postgresql.Driver</value> <description>Driver class name for a JDBC metastore</description> </property> <property> <name>javax.jdo.option.ConnectionUserName</name> <value>hive</value> <description>username to use against metastore database</description> </property> <property> <name>javax.jdo.option.ConnectionPassword</name> <value>hive</value> <description>password to use against metastore database</description> </property> <property> <name>hive.metastore.uris</name> <value>thrift://hive_ip:9083</value> <description>Thrift URI for the remote metastore. Used by metastore client to connect to remote metastore. </description> </property> <property> <name>datanucleus.schema.autoCreateAll</name> <value>true</value> </property> </configuration> ``` ### 11.2 安装hadoop环境 由于`hive`的镜像已经锁死了`hadoop`的版本为`2.7.4`,所以我这边`flink`所以来的`hadoop`也是下载`2.7.4`版本 1、下载`hadoop`压缩包 ```shell wget https://archive.apache.org/dist/hadoop/common/hadoop-2.7.4/hadoop-2.7.4.tar.gz ``` 2、解压`hadoop` ```shell tar -zxf hadoop-2.7.4.tar.gz ``` 3、`hadoop`的配置文件`hdfs-site.xml`增加以下内容(我的目录在`/root/hadoop-2.7.4/etc/hadoop`) ```xml <property> <name>dfs.client.use.datanode.hostname</name> <value>true</value> <description>only cofig in clients</description> </property> ``` ### 11.3 安装jdk11 由于高版本的`flink`需要`jdk 11`,所以这边安装下该版本的`jdk`: ```shell yum install java-11-openjdk.x86_64 yum install java-11-openjdk-devel.x86_64 ``` ### 11.4 配置jdk、hadoop的环境变量 这一步为了能让`flink`在启动的时候,加载到`jdk`和`hadoop`的环境。 1、编辑`/etc/profile`文件 ```shell vim /etc/profile ``` 2、文件内容最底下增加以下配置: ```shell JAVA_HOME=/usr/lib/jvm/java-11-openjdk-11.0.17.0.8-2.el7_9.x86_64 JRE_HOME=$JAVA_HOME/jre CLASS_PATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar:$JRE_HOME/lib PATH=$PATH:$JAVA_HOME/bin:$JRE_HOME/bin export JAVA_HOME JRE_HOME CLASS_PATH PATH export HADOOP_HOME=/root/hadoop-2.7.4 export PATH=$HADOOP_HOME/bin:$PATH export HADOOP_CLASSPATH=`hadoop classpath` ``` 3、让配置文件生效 ```shell source /etc/profile ``` ### 11.5 增加hosts进行通信(flink和namenode/datanode之间) 在部署`flink`服务器上增加`hosts`,有以下(`ip`为部署`hive`的地址): ```shell 127.0.0.1 namenode 127.0.0.1 datanode 127.0.0.1 b2a0f0310722 ``` 其中 `b2a0f0310722`是`datanode`的主机名,该主机名会随着`hive`的`docker`而变更,我们可以登录`namenode`的后台地址找到其主机名。而方法则是在部署`hive`的地址输入: ``` http://localhost:50070/dfshealth.html#tab-datanode ``` ![](images/28.png) ### 11.6 启动flink调试kafka数据到hive 启动`flink-sql`的客户端: ```shell ./sql-client.sh ``` 在`sql`客户端下执行以下脚本命令,注:`hive-conf-dir`要放在`$FLINK_HOME/conf`下 ```shell CREATE CATALOG my_hive WITH ( 'type' = 'hive', 'hive-conf-dir' = '/root/flink-1.16.0/conf' ); ``` ```shell use catalog my_hive; ``` ```shell create database austin; ``` 重启`flink`集群 ```shell ./stop-cluster.sh ``` ```shell ./start-cluster.sh ``` 重新提交执行`flink`任务 ```shell ./flink run austin-data-house-0.0.1-SNAPSHOT.jar ``` 启动消费者的命令(将`ip`和`port`改为自己服务器所部署的Kafka信息): ```shell $KAFKA_HOME/bin/kafka-console-producer.sh --topic austinTraceLog --broker-list ip:port ``` 输入测试数据: ```json {"state":"1","businessId":"2","ids":[1,2,3],"logTimestamp":"123123"} ``` ## 12、安装METABASE(可选) ```yaml version: '3' services: metabase: image: metabase/metabase container_name: metabase ports: - "5001:3000" restart: always ``` **安装文件详见./doc/docker/metabase目录** ## 13、安装单机nacos(可选) `docker-compose.yaml`文件如下 ```yaml version: "3" services: nacos1: container_name: nacos-server hostname: nacos-server image: nacos/nacos-server:v2.1.0 environment: - MODE=standalone - PREFER_HOST_MODE=hostname - SPRING_DATASOURCE_PLATFORM=mysql - MYSQL_SERVICE_HOST=ip # TODO ip需设置 - MYSQL_SERVICE_PORT=3306 - MYSQL_SERVICE_USER=root - MYSQL_SERVICE_PASSWORD=root123_A - MYSQL_SERVICE_DB_NAME=nacos_config - JVM_XMS=128m - JVM_XMX=128m - JVM_XMN=128m volumes: - /home/nacos/single-logs/nacos-server:/home/nacos/logs - /home/nacos/init.d:/home/nacos/init.d ports: - 8848:8848 - 9848:9848 - 9849:9849 restart: on-failure ``` **安装文件详见./doc/docker/nacos目录** ## 14、安装单机rabbitmq(可选) `docker-compose.yaml`文件如下 ```yaml version: '3' services: rabbitmq: image: registry.cn-hangzhou.aliyuncs.com/zhengqing/rabbitmq:3.7.8-management # 原镜像`rabbitmq:3.7.8-management` 【 注:该版本包含了web控制页面 】 container_name: rabbitmq # 容器名为'rabbitmq' hostname: my-rabbit restart: unless-stopped # 指定容器退出后的重启策略为始终重启,但是不考虑在Docker守护进程启动时就已经停止了的容器 environment: # 设置环境变量,相当于docker run命令中的-e TZ: Asia/Shanghai LANG: en_US.UTF-8 RABBITMQ_DEFAULT_VHOST: my_vhost # 主机名 RABBITMQ_DEFAULT_USER: admin # 登录账号 RABBITMQ_DEFAULT_PASS: admin # 登录密码 volumes: # 数据卷挂载路径设置,将本机目录映射到容器目录 - "./rabbitmq/data:/var/lib/rabbitmq" ports: # 映射端口 - "5672:5672" - "15672:15672" ``` **安装文件详见./doc/docker/rabbitmq目录** ## 15、安装单机rocketmq(可选) `docker-compose.yaml`文件如下 ```yaml version: '3.5' services: # mq服务 rocketmq_server: image: foxiswho/rocketmq:server container_name: rocketmq_server ports: - 9876:9876 volumes: - ./rocketmq/rocketmq_server/logs:/opt/logs - ./rocketmq/rocketmq_server/store:/opt/store networks: rocketmq: aliases: - rocketmq_server # mq中间件 rocketmq_broker: image: foxiswho/rocketmq:broker container_name: rocketmq_broker ports: - 10909:10909 - 10911:10911 volumes: - ./rocketmq/rocketmq_broker/logs:/opt/logs - ./rocketmq/rocketmq_broker/store:/opt/store - ./rocketmq/rocketmq_broker/conf/broker.conf:/etc/rocketmq/broker.conf environment: NAMESRV_ADDR: "rocketmq_server:9876" JAVA_OPTS: " -Duser.home=/opt" JAVA_OPT_EXT: "-server -Xms128m -Xmx128m -Xmn128m" command: mqbroker -c /etc/rocketmq/broker.conf depends_on: - rocketmq_server networks: rocketmq: aliases: - rocketmq_broker # mq可视化控制台 rocketmq_console_ng: image: styletang/rocketmq-console-ng container_name: rocketmq_console_ng ports: - 9002:8080 environment: JAVA_OPTS: "-Drocketmq.namesrv.addr=rocketmq_server:9876 -Dcom.rocketmq.sendMessageWithVIPChannel=false" depends_on: - rocketmq_server networks: rocketmq: aliases: - rocketmq_console_ng #容器通信network networks: rocketmq: name: rocketmq driver: bridge ``` **安装文件详见./doc/docker/rocketmq目录**