You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Web-Dev-For-Beginners/translations/pa/9-chat-project
leestott 816d692e61
🌐 Update translations via Co-op Translator
3 weeks ago
..
solution 🌐 Update translations via Co-op Translator 3 weeks ago
README.md 🌐 Update translations via Co-op Translator 3 weeks ago

README.md

ਚੈਟ ਪ੍ਰੋਜੈਕਟ

ਇਹ ਚੈਟ ਪ੍ਰੋਜੈਕਟ ਦਿਖਾਉਂਦਾ ਹੈ ਕਿ ਗਿਟਹੱਬ ਮਾਡਲਜ਼ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਇੱਕ ਚੈਟ ਅਸਿਸਟੈਂਟ ਕਿਵੇਂ ਬਣਾਇਆ ਜਾ ਸਕਦਾ ਹੈ।

ਇਹ ਹੈ ਕਿ ਤਿਆਰ ਪ੍ਰੋਜੈਕਟ ਕਿਵੇਂ ਲੱਗਦਾ ਹੈ:

ਚੈਟ ਐਪ

ਕੁਝ ਸੰਦਰਭ, ਜਨਰੇਟਿਵ AI ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਚੈਟ ਅਸਿਸਟੈਂਟ ਬਣਾਉਣਾ AI ਬਾਰੇ ਸਿੱਖਣ ਦੀ ਸ਼ੁਰੂਆਤ ਕਰਨ ਦਾ ਵਧੀਆ ਤਰੀਕਾ ਹੈ। ਇਸ ਪਾਠ ਦੌਰਾਨ ਤੁਸੀਂ ਸਿੱਖੋਗੇ ਕਿ ਜਨਰੇਟਿਵ AI ਨੂੰ ਵੈੱਬ ਐਪ ਵਿੱਚ ਕਿਵੇਂ ਜੋੜਨਾ ਹੈ। ਆਓ ਸ਼ੁਰੂ ਕਰੀਏ।

ਜਨਰੇਟਿਵ AI ਨਾਲ ਕਨੈਕਟ ਕਰਨਾ

ਬੈਕਐਂਡ ਲਈ, ਅਸੀਂ ਗਿਟਹੱਬ ਮਾਡਲਜ਼ ਦੀ ਵਰਤੋਂ ਕਰ ਰਹੇ ਹਾਂ। ਇਹ ਇੱਕ ਸ਼ਾਨਦਾਰ ਸੇਵਾ ਹੈ ਜੋ ਤੁਹਾਨੂੰ ਮੁਫ਼ਤ ਵਿੱਚ AI ਦੀ ਵਰਤੋਂ ਕਰਨ ਦੀ ਆਗਿਆ ਦਿੰਦੀ ਹੈ। ਇਸਦੇ ਪਲੇਗ੍ਰਾਊਂਡ ਤੇ ਜਾਓ ਅਤੇ ਆਪਣੇ ਚੁਣੇ ਹੋਏ ਬੈਕਐਂਡ ਭਾਸ਼ਾ ਨਾਲ ਸਬੰਧਤ ਕੋਡ ਲਵੋ। ਇਹ GitHub Models Playground 'ਤੇ ਇਸ ਤਰ੍ਹਾਂ ਲੱਗਦਾ ਹੈ।

GitHub ਮਾਡਲਜ਼ AI ਪਲੇਗ੍ਰਾਊਂਡ

ਜਿਵੇਂ ਅਸੀਂ ਕਿਹਾ ਸੀ, "Code" ਟੈਬ ਅਤੇ ਆਪਣੀ ਚੁਣੀ ਹੋਈ ਰਨਟਾਈਮ ਚੁਣੋ।

ਪਲੇਗ੍ਰਾਊਂਡ ਚੋਣ

ਇਸ ਮਾਮਲੇ ਵਿੱਚ ਅਸੀਂ Python ਚੁਣਦੇ ਹਾਂ, ਜਿਸਦਾ ਮਤਲਬ ਹੈ ਕਿ ਅਸੀਂ ਇਹ ਕੋਡ ਚੁਣਾਂਗੇ:

"""Run this model in Python

> pip install openai
"""
import os
from openai import OpenAI

# To authenticate with the model you will need to generate a personal access token (PAT) in your GitHub settings. 
# Create your PAT token by following instructions here: https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/managing-your-personal-access-tokens
client = OpenAI(
    base_url="https://models.github.ai/inference",
    api_key=os.environ["GITHUB_TOKEN"],
)

response = client.chat.completions.create(
    messages=[
        {
            "role": "system",
            "content": "",
        },
        {
            "role": "user",
            "content": "What is the capital of France?",
        }
    ],
    model="openai/gpt-4o-mini",
    temperature=1,
    max_tokens=4096,
    top_p=1
)

print(response.choices[0].message.content)

ਆਓ ਇਸ ਕੋਡ ਨੂੰ ਕੁਝ ਸਾਫ ਕਰੀਏ ਤਾਂ ਜੋ ਇਹ ਦੁਬਾਰਾ ਵਰਤਣ ਯੋਗ ਹੋਵੇ:

def call_llm(prompt: str, system_message: str):
    response = client.chat.completions.create(
        messages=[
            {
                "role": "system",
                "content": system_message,
            },
            {
                "role": "user",
                "content": prompt,
            }
        ],
        model="openai/gpt-4o-mini",
        temperature=1,
        max_tokens=4096,
        top_p=1
    )

    return response.choices[0].message.content

ਇਸ ਫੰਕਸ਼ਨ call_llm ਨਾਲ ਹੁਣ ਅਸੀਂ ਇੱਕ ਪ੍ਰੌਮਪਟ ਅਤੇ ਇੱਕ ਸਿਸਟਮ ਪ੍ਰੌਮਪਟ ਲੈ ਸਕਦੇ ਹਾਂ ਅਤੇ ਫੰਕਸ਼ਨ ਨਤੀਜਾ ਵਾਪਸ ਕਰਦਾ ਹੈ।

AI ਅਸਿਸਟੈਂਟ ਨੂੰ ਕਸਟਮਾਈਜ਼ ਕਰੋ

ਜੇ ਤੁਸੀਂ AI ਅਸਿਸਟੈਂਟ ਨੂੰ ਕਸਟਮਾਈਜ਼ ਕਰਨਾ ਚਾਹੁੰਦੇ ਹੋ ਤਾਂ ਤੁਸੀਂ ਸਿਸਟਮ ਪ੍ਰੌਮਪਟ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਭਰ ਕੇ ਇਸਦੀ ਵਰਤੋਂ ਨੂੰ ਨਿਰਧਾਰਤ ਕਰ ਸਕਦੇ ਹੋ:

call_llm("Tell me about you", "You're Albert Einstein, you only know of things in the time you were alive")

ਇਸਨੂੰ ਵੈੱਬ API ਰਾਹੀਂ ਐਕਸਪੋਜ਼ ਕਰੋ

ਵਧੀਆ, ਅਸੀਂ AI ਹਿੱਸਾ ਤਿਆਰ ਕਰ ਲਿਆ ਹੈ, ਆਓ ਵੇਖੀਏ ਕਿ ਅਸੀਂ ਇਸਨੂੰ ਵੈੱਬ API ਵਿੱਚ ਕਿਵੇਂ ਜੋੜ ਸਕਦੇ ਹਾਂ। ਵੈੱਬ API ਲਈ, ਅਸੀਂ Flask ਦੀ ਵਰਤੋਂ ਕਰ ਰਹੇ ਹਾਂ, ਪਰ ਕੋਈ ਵੀ ਵੈੱਬ ਫਰੇਮਵਰਕ ਚੰਗਾ ਹੋਵੇਗਾ। ਆਓ ਇਸਦਾ ਕੋਡ ਵੇਖੀਏ:

# api.py
from flask import Flask, request, jsonify
from llm import call_llm
from flask_cors import CORS

app = Flask(__name__)
CORS(app)   # *   example.com

@app.route("/", methods=["GET"])
def index():
    return "Welcome to this API. Call POST /hello with 'message': 'my message' as JSON payload"


@app.route("/hello", methods=["POST"])
def hello():
    # get message from request body  { "message": "do this taks for me" }
    data = request.get_json()
    message = data.get("message", "")

    response = call_llm(message, "You are a helpful assistant.")
    return jsonify({
        "response": response
    })

if __name__ == "__main__":
    app.run(host="0.0.0.0", port=5000)

ਇੱਥੇ, ਅਸੀਂ ਇੱਕ Flask API ਬਣਾਉਂਦੇ ਹਾਂ ਅਤੇ ਇੱਕ ਡਿਫਾਲਟ ਰੂਟ "/" ਅਤੇ "/chat" ਪਰਿਭਾਸ਼ਿਤ ਕਰਦੇ ਹਾਂ। ਦੂਜਾ ਰੂਟ ਸਾਡੇ ਫਰੰਟਐਂਡ ਦੁਆਰਾ ਪ੍ਰਸ਼ਨ ਭੇਜਣ ਲਈ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ।

llm.py ਨੂੰ ਜੋੜਨ ਲਈ, ਅਸੀਂ ਇਹ ਕਰਨਾ ਹੈ:

  • call_llm ਫੰਕਸ਼ਨ ਨੂੰ ਇੰਪੋਰਟ ਕਰੋ:

    from llm import call_llm
    from flask import Flask, request
    
  • "/chat" ਰੂਟ ਤੋਂ ਇਸਨੂੰ ਕਾਲ ਕਰੋ:

    @app.route("/hello", methods=["POST"])
    def hello():
       # get message from request body  { "message": "do this taks for me" }
       data = request.get_json()
       message = data.get("message", "")
    
       response = call_llm(message, "You are a helpful assistant.")
       return jsonify({
          "response": response
       })
    

    ਇੱਥੇ ਅਸੀਂ ਆਉਣ ਵਾਲੀ ਰਿਕਵੈਸਟ ਨੂੰ ਪਾਰਸ ਕਰਦੇ ਹਾਂ ਤਾਂ ਜੋ JSON ਬਾਡੀ ਤੋਂ message ਪ੍ਰਾਪਰਟੀ ਪ੍ਰਾਪਤ ਕੀਤੀ ਜਾ ਸਕੇ। ਇਸ ਤੋਂ ਬਾਅਦ ਅਸੀਂ LLM ਨੂੰ ਇਸ ਕਾਲ ਨਾਲ ਕਾਲ ਕਰਦੇ ਹਾਂ:

    response = call_llm(message, "You are a helpful assistant")
    
    # return the response as JSON
    return jsonify({
       "response": response 
    })
    

ਵਧੀਆ, ਹੁਣ ਅਸੀਂ ਜੋ ਲੋੜ ਸੀ ਉਹ ਕਰ ਲਿਆ ਹੈ।

Cors ਕਨਫਿਗਰ ਕਰੋ

ਸਾਨੂੰ ਇਹ ਗੱਲ ਦੱਸਣੀ ਚਾਹੀਦੀ ਹੈ ਕਿ ਅਸੀਂ CORS (ਕਰਾਸ-ਓਰਿਜਿਨ ਰਿਸੋਰਸ ਸ਼ੇਅਰਿੰਗ) ਸੈਟਅੱਪ ਕੀਤਾ ਹੈ। ਇਸਦਾ ਮਤਲਬ ਹੈ ਕਿ ਕਿਉਂਕਿ ਸਾਡਾ ਬੈਕਐਂਡ ਅਤੇ ਫਰੰਟਐਂਡ ਵੱਖ-ਵੱਖ ਪੋਰਟਾਂ 'ਤੇ ਚੱਲਣਗੇ, ਸਾਨੂੰ ਫਰੰਟਐਂਡ ਨੂੰ ਬੈਕਐਂਡ ਵਿੱਚ ਕਾਲ ਕਰਨ ਦੀ ਆਗਿਆ ਦੇਣੀ ਪਵੇਗੀ। api.py ਵਿੱਚ ਇੱਕ ਕੋਡ ਦਾ ਟੁਕੜਾ ਹੈ ਜੋ ਇਸਨੂੰ ਸੈਟਅੱਪ ਕਰਦਾ ਹੈ:

from flask_cors import CORS

app = Flask(__name__)
CORS(app)   # *   example.com

ਇਸ ਵੇਲੇ ਇਹ "*" (ਸਾਰੇ ਓਰਿਜਿਨ) ਦੀ ਆਗਿਆ ਦੇਣ ਲਈ ਸੈਟ ਕੀਤਾ ਗਿਆ ਹੈ ਜੋ ਕਿ ਕੁਝ ਅਸੁਰੱਖਿਅਤ ਹੈ। ਜਦੋਂ ਅਸੀਂ ਪ੍ਰੋਡਕਸ਼ਨ ਵਿੱਚ ਜਾਵਾਂਗੇ ਤਾਂ ਇਸਨੂੰ ਸੀਮਿਤ ਕਰਨਾ ਚਾਹੀਦਾ ਹੈ।

ਆਪਣਾ ਪ੍ਰੋਜੈਕਟ ਚਲਾਓ

ਠੀਕ ਹੈ, ਤਾਂ ਸਾਡੇ ਕੋਲ llm.py ਅਤੇ api.py ਹੈ। ਹੁਣ ਅਸੀਂ ਇਸਨੂੰ ਬੈਕਐਂਡ ਨਾਲ ਕਿਵੇਂ ਚਲਾ ਸਕਦੇ ਹਾਂ? ਖੈਰ, ਦੋ ਚੀਜ਼ਾਂ ਕਰਨ ਦੀ ਲੋੜ ਹੈ:

  • ਡਿਪੈਂਡੈਂਸੀਜ਼ ਇੰਸਟਾਲ ਕਰੋ:

    cd backend
    python -m venv venv
    source ./venv/bin/activate
    
    pip install openai flask flask-cors openai
    
  • API ਸ਼ੁਰੂ ਕਰੋ:

    python api.py
    

    ਜੇ ਤੁਸੀਂ Codespaces ਵਿੱਚ ਹੋ ਤਾਂ ਤੁਹਾਨੂੰ ਐਡੀਟਰ ਦੇ ਹੇਠਲੇ ਹਿੱਸੇ ਵਿੱਚ ਪੋਰਟਸ 'ਤੇ ਜਾਣਾ ਪਵੇਗਾ, ਇਸ 'ਤੇ ਰਾਈਟ-ਕਲਿਕ ਕਰੋ ਅਤੇ "Port Visibility" ਤੇ ਕਲਿਕ ਕਰੋ ਅਤੇ "Public" ਚੁਣੋ।

ਫਰੰਟਐਂਡ 'ਤੇ ਕੰਮ ਕਰੋ

ਹੁਣ ਜਦੋਂ ਸਾਡਾ API ਚੱਲ ਰਿਹਾ ਹੈ, ਆਓ ਇਸ ਲਈ ਇੱਕ ਫਰੰਟਐਂਡ ਬਣਾਈਏ। ਇੱਕ ਬੇਸਿਕ ਫਰੰਟਐਂਡ ਜੋ ਅਸੀਂ ਕਦਮ-ਦਰ-ਕਦਮ ਸੁਧਾਰਾਂਗੇ। ਇੱਕ frontend ਫੋਲਡਰ ਵਿੱਚ ਇਹ ਬਣਾਓ:

backend/
frontend/
index.html
app.js
styles.css

index.html ਨਾਲ ਸ਼ੁਰੂ ਕਰੀਏ:

<html>
    <head>
        <link rel="stylesheet" href="styles.css">
    </head>
    <body>
      <form>
        <textarea id="messages"></textarea>
        <input id="input" type="text" />
        <button type="submit" id="sendBtn">Send</button>  
      </form>  
      <script src="app.js" />
    </body>
</html>    

ਉਪਰੋਕਤ ਘੱਟੋ-ਘੱਟ ਹੈ ਜੋ ਤੁਹਾਨੂੰ ਇੱਕ ਚੈਟ ਵਿੰਡੋ ਨੂੰ ਸਹਾਰਾ ਦੇਣ ਲਈ ਲੋੜੀਂਦਾ ਹੈ। ਇਸ ਵਿੱਚ ਇੱਕ ਟੈਕਸਟਏਰੀਆ ਹੈ ਜਿੱਥੇ ਸੁਨੇਹੇ ਰੈਂਡਰ ਕੀਤੇ ਜਾਣਗੇ, ਇੱਕ ਇਨਪੁਟ ਜਿੱਥੇ ਸੁਨੇਹਾ ਲਿਖਿਆ ਜਾਵੇਗਾ ਅਤੇ ਇੱਕ ਬਟਨ ਜੋ ਤੁਹਾਡੇ ਸੁਨੇਹੇ ਨੂੰ ਬੈਕਐਂਡ ਨੂੰ ਭੇਜਣ ਲਈ ਹੈ। ਆਓ app.js ਵਿੱਚ ਜਾਵਾਸਕ੍ਰਿਪਟ ਵੇਖੀਏ।

app.js

// app.js

(function(){
  // 1. set up elements  
  const messages = document.getElementById("messages");
  const form = document.getElementById("form");
  const input = document.getElementById("input");

  const BASE_URL = "change this";
  const API_ENDPOINT = `${BASE_URL}/hello`;

  // 2. create a function that talks to our backend
  async function callApi(text) {
    const response = await fetch(API_ENDPOINT, {
      method: "POST",
      headers: { "Content-Type": "application/json" },
      body: JSON.stringify({ message: text })
    });
    let json = await response.json();
    return json.response;
  }

  // 3. add response to our textarea
  function appendMessage(text, role) {
    const el = document.createElement("div");
    el.className = `message ${role}`;
    el.innerHTML = text;
    messages.appendChild(el);
  }

  // 4. listen to submit events
  form.addEventListener("submit", async(e) => {
    e.preventDefault();
   // someone clicked the button in the form
   
   // get input
   const text = input.value.trim();

   appendMessage(text, "user")

   // reset it
   input.value = '';

   const reply = await callApi(text);

   // add to messages
   appendMessage(reply, "assistant");

  })
})();

ਆਓ ਕੋਡ ਨੂੰ ਹਰੇਕ ਭਾਗ ਅਨੁਸਾਰ ਸਮਝੀਏ:

    1. ਇੱਥੇ ਅਸੀਂ ਸਾਰੇ ਐਲੀਮੈਂਟਸ ਦੇ ਰਿਫਰੈਂਸ ਲੈਂਦੇ ਹਾਂ ਜਿਨ੍ਹਾਂ ਨੂੰ ਅਸੀਂ ਬਾਅਦ ਵਿੱਚ ਕੋਡ ਵਿੱਚ ਵਰਤਾਂਗੇ।
    1. ਇਸ ਭਾਗ ਵਿੱਚ, ਅਸੀਂ ਇੱਕ ਫੰਕਸ਼ਨ ਬਣਾਉਂਦੇ ਹਾਂ ਜੋ ਬਿਲਟ-ਇਨ fetch ਮੈਥਡ ਦੀ ਵਰਤੋਂ ਕਰਦਾ ਹੈ ਜੋ ਸਾਡੇ ਬੈਕਐਂਡ ਨੂੰ ਕਾਲ ਕਰਦਾ ਹੈ।
    1. appendMessage ਸਹਾਇਕ ਹੁੰਦਾ ਹੈ ਜਵਾਬਾਂ ਅਤੇ ਜੋ ਤੁਸੀਂ ਯੂਜ਼ਰ ਵਜੋਂ ਲਿਖਦੇ ਹੋ, ਦੋਹਾਂ ਨੂੰ ਸ਼ਾਮਲ ਕਰਨ ਵਿੱਚ।
    1. ਇੱਥੇ ਅਸੀਂ ਸਬਮਿਟ ਇਵੈਂਟ ਨੂੰ ਸੁਣਦੇ ਹਾਂ ਅਤੇ ਅਸੀਂ ਇਨਪੁਟ ਫੀਲਡ ਨੂੰ ਪੜ੍ਹਦੇ ਹਾਂ, ਯੂਜ਼ਰ ਦਾ ਸੁਨੇਹਾ ਟੈਕਸਟਏਰੀਆ ਵਿੱਚ ਰੱਖਦੇ ਹਾਂ, API ਨੂੰ ਕਾਲ ਕਰਦੇ ਹਾਂ ਅਤੇ ਟੈਕਸਟਏਰੀਆ ਵਿੱਚ ਜਵਾਬ ਰੈਂਡਰ ਕਰਦੇ ਹਾਂ।

ਹੁਣ ਸਟਾਈਲਿੰਗ ਵੇਖੀਏ। ਇੱਥੇ ਤੁਸੀਂ ਆਪਣੀ ਪਸੰਦ ਅਨੁਸਾਰ ਬਦਲਾਅ ਕਰ ਸਕਦੇ ਹੋ, ਪਰ ਇੱਥੇ ਕੁਝ ਸੁਝਾਅ ਹਨ:

styles.css

.message {
    background: #222;
    box-shadow: 0 0 0 10px orange;
    padding: 10px:
    margin: 5px;
}

.message.user {
    background: blue;
}

.message.assistant {
    background: grey;
} 

ਇਹ ਤਿੰਨ ਕਲਾਸਾਂ ਨਾਲ, ਤੁਸੀਂ ਸੁਨੇਹਿਆਂ ਨੂੰ ਸਟਾਈਲ ਕਰ ਸਕਦੇ ਹੋ ਕਿ ਉਹ ਕਿੱਥੋਂ ਆ ਰਹੇ ਹਨ - ਅਸਿਸਟੈਂਟ ਤੋਂ ਜਾਂ ਯੂਜ਼ਰ ਤੋਂ। ਜੇ ਤੁਸੀਂ ਪ੍ਰੇਰਿਤ ਹੋਣਾ ਚਾਹੁੰਦੇ ਹੋ, ਤਾਂ solution/frontend/styles.css ਫੋਲਡਰ ਵੇਖੋ।

ਬੇਸ URL ਬਦਲੋ

ਇੱਥੇ ਇੱਕ ਗੱਲ ਸੀ ਜੋ ਅਸੀਂ ਸੈਟ ਨਹੀਂ ਕੀਤੀ ਸੀ ਅਤੇ ਉਹ ਸੀ BASE_URL, ਇਹ ਤੁਹਾਡੇ ਬੈਕਐਂਡ ਦੇ ਸ਼ੁਰੂ ਹੋਣ ਤੱਕ ਪਤਾ ਨਹੀਂ ਹੁੰਦੀ। ਇਸਨੂੰ ਸੈਟ ਕਰਨ ਲਈ:

  • ਜੇ ਤੁਸੀਂ API ਨੂੰ ਲੋਕਲ ਚਲਾਉਂਦੇ ਹੋ, ਤਾਂ ਇਹ ਕੁਝ ਇਸ ਤਰ੍ਹਾਂ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ http://localhost:5000
  • ਜੇ Codespaces ਵਿੱਚ ਚਲਾਇਆ ਜਾਵੇ, ਤਾਂ ਇਹ ਕੁਝ ਇਸ ਤਰ੍ਹਾਂ ਲੱਗੇਗਾ "[name]app.github.dev"।

ਅਸਾਈਨਮੈਂਟ

ਆਪਣਾ ਇੱਕ ਫੋਲਡਰ project ਬਣਾਓ ਜਿਸ ਵਿੱਚ ਇਸ ਤਰ੍ਹਾਂ ਦੀ ਸਮੱਗਰੀ ਹੋਵੇ:

project/
  frontend/
    index.html
    app.js
    styles.css
  backend/
    api.py
    llm.py

ਉਪਰ ਦਿੱਤੇ ਨਿਰਦੇਸ਼ਾਂ ਤੋਂ ਸਮੱਗਰੀ ਕਾਪੀ ਕਰੋ ਪਰ ਆਪਣੀ ਪਸੰਦ ਅਨੁਸਾਰ ਕਸਟਮਾਈਜ਼ ਕਰੋ।

ਹੱਲ

ਹੱਲ

ਬੋਨਸ

AI ਅਸਿਸਟੈਂਟ ਦੀ ਪਸੰਸਨਲਿਟੀ ਬਦਲਣ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰੋ। ਜਦੋਂ ਤੁਸੀਂ api.py ਵਿੱਚ call_llm ਨੂੰ ਕਾਲ ਕਰਦੇ ਹੋ, ਤਾਂ ਤੁਸੀਂ ਦੂਜੇ ਆਰਗੂਮੈਂਟ ਨੂੰ ਆਪਣੀ ਪਸੰਦ ਅਨੁਸਾਰ ਬਦਲ ਸਕਦੇ ਹੋ, ਉਦਾਹਰਨ ਲਈ:

call_llm(message, "You are Captain Picard")

CSS ਅਤੇ ਟੈਕਸਟ ਨੂੰ ਵੀ ਆਪਣੀ ਪਸੰਦ ਅਨੁਸਾਰ ਬਦਲੋ, ਇਸ ਲਈ index.html ਅਤੇ styles.css ਵਿੱਚ ਬਦਲਾਅ ਕਰੋ।

ਸਾਰ

ਵਧੀਆ, ਤੁਸੀਂ ਸ਼ੁਰੂ ਤੋਂ ਸਿੱਖ ਲਿਆ ਕਿ AI ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਇੱਕ ਨਿੱਜੀ ਅਸਿਸਟੈਂਟ ਕਿਵੇਂ ਬਣਾਇਆ ਜਾ ਸਕਦਾ ਹੈ। ਅਸੀਂ ਇਹ ਗਿਟਹੱਬ ਮਾਡਲਜ਼, Python ਵਿੱਚ ਬੈਕਐਂਡ ਅਤੇ HTML, CSS ਅਤੇ ਜਾਵਾਸਕ੍ਰਿਪਟ ਵਿੱਚ ਫਰੰਟਐਂਡ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੀਤਾ।

Codespaces ਨਾਲ ਸੈਟਅੱਪ ਕਰੋ

  • ਜਾਓ: Web Dev For Beginners repo

  • ਇੱਕ ਟੈਂਪਲੇਟ ਤੋਂ ਬਣਾਓ (ਪੱਕਾ ਕਰੋ ਕਿ ਤੁਸੀਂ ਗਿਟਹੱਬ ਵਿੱਚ ਲੌਗਇਨ ਹੋ):

    ਟੈਂਪਲੇਟ ਤੋਂ ਬਣਾਓ

  • ਜਦੋਂ ਤੁਸੀਂ ਆਪਣੇ ਰਿਪੋ ਵਿੱਚ ਹੋ, ਤਾਂ ਇੱਕ ਕੋਡਸਪੇਸ ਬਣਾਓ:

    ਕੋਡਸਪੇਸ ਬਣਾਓ

    ਇਹ ਇੱਕ ਐਨਵਾਇਰਨਮੈਂਟ ਸ਼ੁਰੂ ਕਰੇਗਾ ਜਿਸ ਵਿੱਚ ਤੁਸੀਂ ਹੁਣ ਕੰਮ ਕਰ ਸਕਦੇ ਹੋ।


ਅਸਵੀਕਾਰਨਾ:
ਇਹ ਦਸਤਾਵੇਜ਼ AI ਅਨੁਵਾਦ ਸੇਵਾ Co-op Translator ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਅਨੁਵਾਦ ਕੀਤਾ ਗਿਆ ਹੈ। ਹਾਲਾਂਕਿ ਅਸੀਂ ਸਹੀਅਤ ਲਈ ਯਤਨਸ਼ੀਲ ਹਾਂ, ਕਿਰਪਾ ਕਰਕੇ ਧਿਆਨ ਦਿਓ ਕਿ ਸਵੈਚਾਲਿਤ ਅਨੁਵਾਦਾਂ ਵਿੱਚ ਗਲਤੀਆਂ ਜਾਂ ਅਸੁੱਤੀਆਂ ਹੋ ਸਕਦੀਆਂ ਹਨ। ਮੂਲ ਦਸਤਾਵੇਜ਼, ਜੋ ਇਸਦੀ ਮੂਲ ਭਾਸ਼ਾ ਵਿੱਚ ਹੈ, ਨੂੰ ਅਧਿਕਾਰਤ ਸਰੋਤ ਮੰਨਿਆ ਜਾਣਾ ਚਾਹੀਦਾ ਹੈ। ਮਹੱਤਵਪੂਰਨ ਜਾਣਕਾਰੀ ਲਈ, ਪੇਸ਼ੇਵਰ ਮਨੁੱਖੀ ਅਨੁਵਾਦ ਦੀ ਸਿਫਾਰਸ਼ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਇਸ ਅਨੁਵਾਦ ਦੀ ਵਰਤੋਂ ਤੋਂ ਪੈਦਾ ਹੋਣ ਵਾਲੇ ਕਿਸੇ ਵੀ ਗਲਤਫਹਿਮੀ ਜਾਂ ਗਲਤ ਵਿਆਖਿਆ ਲਈ ਅਸੀਂ ਜ਼ਿੰਮੇਵਾਰ ਨਹੀਂ ਹਾਂ।