# چیٹ پروجیکٹ یہ چیٹ پروجیکٹ دکھاتا ہے کہ GitHub Models کا استعمال کرتے ہوئے ایک چیٹ اسسٹنٹ کیسے بنایا جا سکتا ہے۔ یہاں مکمل شدہ پروجیکٹ کی جھلک ہے:
چیٹ ایپ
کچھ پس منظر: جنریٹیو AI کا استعمال کرتے ہوئے چیٹ اسسٹنٹس بنانا AI کے بارے میں سیکھنے کا ایک بہترین طریقہ ہے۔ اس سبق کے دوران آپ سیکھیں گے کہ جنریٹیو AI کو ایک ویب ایپ میں کیسے ضم کیا جائے۔ تو آئیے شروع کرتے ہیں۔ ## جنریٹیو AI سے جڑنا بیک اینڈ کے لیے، ہم GitHub Models استعمال کر رہے ہیں۔ یہ ایک بہترین سروس ہے جو آپ کو مفت میں AI استعمال کرنے کی اجازت دیتی ہے۔ اس کے پلے گراؤنڈ پر جائیں اور اپنے منتخب کردہ بیک اینڈ لینگویج کے مطابق کوڈ حاصل کریں۔ یہ کچھ اس طرح نظر آتا ہے: [GitHub Models Playground](https://github.com/marketplace/models/azure-openai/gpt-4o-mini/playground)
GitHub Models AI Playground
جیسا کہ ہم نے کہا، "Code" ٹیب اور اپنی منتخب کردہ رن ٹائم کو منتخب کریں۔
پلے گراؤنڈ کا انتخاب
### Python کا استعمال اس مثال میں ہم Python منتخب کرتے ہیں، جس کا مطلب ہے کہ ہم یہ کوڈ لیں گے: ```python """Run this model in Python > pip install openai """ import os from openai import OpenAI # To authenticate with the model you will need to generate a personal access token (PAT) in your GitHub settings. # Create your PAT token by following instructions here: https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/managing-your-personal-access-tokens client = OpenAI( base_url="https://models.github.ai/inference", api_key=os.environ["GITHUB_TOKEN"], ) response = client.chat.completions.create( messages=[ { "role": "system", "content": "", }, { "role": "user", "content": "What is the capital of France?", } ], model="openai/gpt-4o-mini", temperature=1, max_tokens=4096, top_p=1 ) print(response.choices[0].message.content) ``` آئیے اس کوڈ کو تھوڑا صاف کریں تاکہ یہ دوبارہ استعمال کے قابل ہو: ```python def call_llm(prompt: str, system_message: str): response = client.chat.completions.create( messages=[ { "role": "system", "content": system_message, }, { "role": "user", "content": prompt, } ], model="openai/gpt-4o-mini", temperature=1, max_tokens=4096, top_p=1 ) return response.choices[0].message.content ``` اس فنکشن `call_llm` کے ساتھ، ہم اب ایک پرامپٹ اور ایک سسٹم پرامپٹ لے سکتے ہیں، اور یہ فنکشن نتیجہ واپس کرے گا۔ ### AI اسسٹنٹ کو حسب ضرورت بنائیں اگر آپ AI اسسٹنٹ کو اپنی مرضی کے مطابق بنانا چاہتے ہیں تو آپ سسٹم پرامپٹ کو اس طرح بھر کر اس کے رویے کو مخصوص کر سکتے ہیں: ```python call_llm("Tell me about you", "You're Albert Einstein, you only know of things in the time you were alive") ``` ## اسے ایک ویب API کے ذریعے ظاہر کریں زبردست، ہم نے AI کا حصہ مکمل کر لیا، اب دیکھتے ہیں کہ اسے ویب API میں کیسے ضم کیا جا سکتا ہے۔ ویب API کے لیے، ہم Flask استعمال کر رہے ہیں، لیکن کوئی بھی ویب فریم ورک ٹھیک رہے گا۔ آئیے اس کا کوڈ دیکھتے ہیں: ### Python کا استعمال ```python # api.py from flask import Flask, request, jsonify from llm import call_llm from flask_cors import CORS app = Flask(__name__) CORS(app) # * example.com @app.route("/", methods=["GET"]) def index(): return "Welcome to this API. Call POST /hello with 'message': 'my message' as JSON payload" @app.route("/hello", methods=["POST"]) def hello(): # get message from request body { "message": "do this taks for me" } data = request.get_json() message = data.get("message", "") response = call_llm(message, "You are a helpful assistant.") return jsonify({ "response": response }) if __name__ == "__main__": app.run(host="0.0.0.0", port=5000) ``` یہاں، ہم ایک Flask API بناتے ہیں اور ایک ڈیفالٹ روٹ "/" اور "/chat" کی وضاحت کرتے ہیں۔ دوسرا روٹ ہمارے فرنٹ اینڈ کے ذریعے سوالات بھیجنے کے لیے استعمال ہوتا ہے۔ *llm.py* کو ضم کرنے کے لیے ہمیں یہ کرنا ہوگا: - `call_llm` فنکشن کو امپورٹ کریں: ```python from llm import call_llm from flask import Flask, request ``` - "/chat" روٹ سے اسے کال کریں: ```python @app.route("/hello", methods=["POST"]) def hello(): # get message from request body { "message": "do this taks for me" } data = request.get_json() message = data.get("message", "") response = call_llm(message, "You are a helpful assistant.") return jsonify({ "response": response }) ``` یہاں ہم آنے والی درخواست کو پارس کرتے ہیں تاکہ JSON باڈی سے `message` پراپرٹی حاصل کی جا سکے۔ اس کے بعد ہم LLM کو اس کال کے ساتھ کال کرتے ہیں: ```python response = call_llm(message, "You are a helpful assistant") # return the response as JSON return jsonify({ "response": response }) ``` زبردست، اب ہم نے وہ کر لیا جو ہمیں کرنا تھا۔ ## Cors کو ترتیب دیں یہ بات قابل ذکر ہے کہ ہم نے CORS (cross-origin resource sharing) جیسی چیز ترتیب دی ہے۔ اس کا مطلب یہ ہے کہ چونکہ ہمارا بیک اینڈ اور فرنٹ اینڈ مختلف پورٹس پر چلیں گے، ہمیں فرنٹ اینڈ کو بیک اینڈ سے کال کرنے کی اجازت دینی ہوگی۔ ### Python کا استعمال *api.py* میں ایک کوڈ کا حصہ ہے جو اسے ترتیب دیتا ہے: ```python from flask_cors import CORS app = Flask(__name__) CORS(app) # * example.com ``` فی الحال یہ "*" پر سیٹ ہے، جو تمام اوریجنز کو اجازت دیتا ہے، اور یہ تھوڑا غیر محفوظ ہے۔ ہمیں پروڈکشن میں جانے سے پہلے اسے محدود کرنا چاہیے۔ ## اپنا پروجیکٹ چلائیں اپنا پروجیکٹ چلانے کے لیے، آپ کو پہلے اپنا بیک اینڈ اور پھر اپنا فرنٹ اینڈ شروع کرنا ہوگا۔ ### Python کا استعمال ٹھیک ہے، تو ہمارے پاس *llm.py* اور *api.py* ہے، ہم بیک اینڈ کے ساتھ اسے کیسے کام میں لائیں؟ دو چیزیں کرنی ہوں گی: - ڈپینڈنسیز انسٹال کریں: ```sh cd backend python -m venv venv source ./venv/bin/activate pip install openai flask flask-cors openai ``` - API شروع کریں: ```sh python api.py ``` اگر آپ Codespaces میں ہیں تو آپ کو ایڈیٹر کے نیچے والے حصے میں Ports پر جانا ہوگا، اس پر رائٹ کلک کریں اور "Port Visibility" پر کلک کریں اور "Public" منتخب کریں۔ ### فرنٹ اینڈ پر کام کریں اب جب کہ ہمارے پاس ایک API چل رہا ہے، آئیے اس کے لیے ایک فرنٹ اینڈ بناتے ہیں۔ ایک بنیادی فرنٹ اینڈ جو ہم مرحلہ وار بہتر کریں گے۔ *frontend* فولڈر میں، درج ذیل بنائیں: ```text backend/ frontend/ index.html app.js styles.css ``` آئیے **index.html** سے شروع کرتے ہیں: ```html