# Chat project Αυτό το έργο συνομιλίας δείχνει πώς να δημιουργήσετε έναν Βοηθό Συνομιλίας χρησιμοποιώντας τα GitHub Models. Δείτε πώς φαίνεται το τελικό έργο: ![Chat app](../../../translated_images/screenshot.0a1ee0d123df681b4501eb53ffb267519fcc20aa653eabecef1e7561ddfb1cab.el.png) Λίγο πλαίσιο, η δημιουργία βοηθών συνομιλίας χρησιμοποιώντας γενετική AI είναι ένας εξαιρετικός τρόπος για να ξεκινήσετε να μαθαίνετε για την AI. Αυτό που θα μάθετε είναι πώς να ενσωματώσετε γενετική AI σε μια εφαρμογή ιστού κατά τη διάρκεια αυτού του μαθήματος. Ας ξεκινήσουμε. ## Σύνδεση με γενετική AI Για το backend, χρησιμοποιούμε τα GitHub Models. Είναι μια εξαιρετική υπηρεσία που σας επιτρέπει να χρησιμοποιείτε AI δωρεάν. Μεταβείτε στο playground και πάρτε τον κώδικα που αντιστοιχεί στη γλώσσα backend που έχετε επιλέξει. Δείτε πώς φαίνεται στο [GitHub Models Playground](https://github.com/marketplace/models/azure-openai/gpt-4o-mini/playground) ![GitHub Models AI Playground](../../../translated_images/playground.d2b927122224ff8ff4028fc842176e353c339147d8925455f36c92fb1655c477.el.png) Όπως είπαμε, επιλέξτε την καρτέλα "Code" και το runtime που έχετε επιλέξει. ![Playground choice](../../../translated_images/playground-choice.1d23ba7d407f47584c9f446c77f0bcf70cae794cc9c8d7849a3cca4a3693e6c4.el.png) ### Χρήση Python Σε αυτή την περίπτωση επιλέγουμε Python, που σημαίνει ότι παίρνουμε αυτόν τον κώδικα: ```python """Run this model in Python > pip install openai """ import os from openai import OpenAI # To authenticate with the model you will need to generate a personal access token (PAT) in your GitHub settings. # Create your PAT token by following instructions here: https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/managing-your-personal-access-tokens client = OpenAI( base_url="https://models.github.ai/inference", api_key=os.environ["GITHUB_TOKEN"], ) response = client.chat.completions.create( messages=[ { "role": "system", "content": "", }, { "role": "user", "content": "What is the capital of France?", } ], model="openai/gpt-4o-mini", temperature=1, max_tokens=4096, top_p=1 ) print(response.choices[0].message.content) ``` Ας καθαρίσουμε λίγο αυτόν τον κώδικα ώστε να είναι επαναχρησιμοποιήσιμος: ```python def call_llm(prompt: str, system_message: str): response = client.chat.completions.create( messages=[ { "role": "system", "content": system_message, }, { "role": "user", "content": prompt, } ], model="openai/gpt-4o-mini", temperature=1, max_tokens=4096, top_p=1 ) return response.choices[0].message.content ``` Με αυτή τη συνάρτηση `call_llm` μπορούμε τώρα να πάρουμε ένα prompt και ένα system prompt και η συνάρτηση επιστρέφει το αποτέλεσμα. ### Προσαρμογή του Βοηθού AI Αν θέλετε να προσαρμόσετε τον Βοηθό AI, μπορείτε να καθορίσετε πώς θέλετε να συμπεριφέρεται, γεμίζοντας το system prompt όπως παρακάτω: ```python call_llm("Tell me about you", "You're Albert Einstein, you only know of things in the time you were alive") ``` ## Έκθεση μέσω Web API Τέλεια, έχουμε ολοκληρώσει το μέρος της AI, ας δούμε πώς μπορούμε να το ενσωματώσουμε σε ένα Web API. Για το Web API, επιλέγουμε να χρησιμοποιήσουμε Flask, αλλά οποιοδήποτε web framework θα ήταν καλό. Ας δούμε τον κώδικα: ### Χρήση Python ```python # api.py from flask import Flask, request, jsonify from llm import call_llm from flask_cors import CORS app = Flask(__name__) CORS(app) # * example.com @app.route("/", methods=["GET"]) def index(): return "Welcome to this API. Call POST /hello with 'message': 'my message' as JSON payload" @app.route("/hello", methods=["POST"]) def hello(): # get message from request body { "message": "do this taks for me" } data = request.get_json() message = data.get("message", "") response = call_llm(message, "You are a helpful assistant.") return jsonify({ "response": response }) if __name__ == "__main__": app.run(host="0.0.0.0", port=5000) ``` Εδώ, δημιουργούμε ένα API με Flask και ορίζουμε μια προεπιλεγμένη διαδρομή "/" και "/chat". Η τελευταία προορίζεται να χρησιμοποιηθεί από το frontend μας για να στείλει ερωτήσεις. Για να ενσωματώσουμε το *llm.py*, εδώ είναι τι πρέπει να κάνουμε: - Εισαγωγή της συνάρτησης `call_llm`: ```python from llm import call_llm from flask import Flask, request ``` - Κλήση της από τη διαδρομή "/chat": ```python @app.route("/hello", methods=["POST"]) def hello(): # get message from request body { "message": "do this taks for me" } data = request.get_json() message = data.get("message", "") response = call_llm(message, "You are a helpful assistant.") return jsonify({ "response": response }) ``` Εδώ αναλύουμε το εισερχόμενο αίτημα για να ανακτήσουμε την ιδιότητα `message` από το JSON σώμα. Στη συνέχεια, καλούμε το LLM με αυτή την κλήση: ```python response = call_llm(message, "You are a helpful assistant") # return the response as JSON return jsonify({ "response": response }) ``` Τέλεια, τώρα έχουμε ολοκληρώσει ό,τι χρειαζόμαστε. ## Ρύθμιση Cors Πρέπει να αναφέρουμε ότι ρυθμίζουμε κάτι σαν CORS, cross-origin resource sharing. Αυτό σημαίνει ότι επειδή το backend και το frontend μας θα τρέχουν σε διαφορετικές θύρες, πρέπει να επιτρέψουμε στο frontend να καλεί το backend. ### Χρήση Python Υπάρχει ένα κομμάτι κώδικα στο *api.py* που το ρυθμίζει: ```python from flask_cors import CORS app = Flask(__name__) CORS(app) # * example.com ``` Αυτή τη στιγμή έχει ρυθμιστεί να επιτρέπει "*" που είναι όλες οι προελεύσεις και αυτό είναι λίγο ανασφαλές. Πρέπει να το περιορίσουμε όταν πάμε σε παραγωγή. ## Εκτέλεση του έργου σας Για να εκτελέσετε το έργο σας, πρέπει πρώτα να ξεκινήσετε το backend και μετά το frontend. ### Χρήση Python Εντάξει, έχουμε *llm.py* και *api.py*, πώς μπορούμε να τα κάνουμε να λειτουργήσουν με ένα backend; Λοιπόν, υπάρχουν δύο πράγματα που πρέπει να κάνουμε: - Εγκατάσταση εξαρτήσεων: ```sh cd backend python -m venv venv source ./venv/bin/activate pip install openai flask flask-cors openai ``` - Εκκίνηση του API ```sh python api.py ``` Αν βρίσκεστε σε Codespaces, πρέπει να μεταβείτε στις Θύρες στο κάτω μέρος του επεξεργαστή, να κάνετε δεξί κλικ πάνω τους και να επιλέξετε "Port Visibility" και να επιλέξετε "Public". ### Εργασία σε frontend Τώρα που έχουμε ένα API που λειτουργεί, ας δημιουργήσουμε ένα frontend για αυτό. Ένα ελάχιστο frontend που θα βελτιώσουμε βήμα προς βήμα. Σε έναν φάκελο *frontend*, δημιουργήστε τα εξής: ```text backend/ frontend/ index.html app.js styles.css ``` Ας ξεκινήσουμε με το **index.html**: ```html