You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
RedditVideoMakerBot/TTS/engine_wrapper.py

136 lines
4.8 KiB

#!/usr/bin/env python3
from pathlib import Path
from typing import Tuple
import re
# import sox
# from mutagen import MutagenError
# from mutagen.mp3 import MP3, HeaderNotFoundError
import translators as ts
from rich.progress import track
from moviepy.editor import AudioFileClip, CompositeAudioClip, concatenate_audioclips
from utils.console import print_step, print_substep
from utils.voice import sanitize_text
from utils import settings
DEFUALT_MAX_LENGTH: int = 50 # video length variable
class TTSEngine:
"""Calls the given TTS engine to reduce code duplication and allow multiple TTS engines.
Args:
tts_module : The TTS module. Your module should handle the TTS itself and saving to the given path under the run method.
reddit_object : The reddit object that contains the posts to read.
path (Optional) : The unix style path to save the mp3 files to. This must not have leading or trailing slashes.
max_length (Optional) : The maximum length of the mp3 files in total.
Notes:
tts_module must take the arguments text and filepath.
"""
def __init__(
self,
tts_module,
reddit_object: dict,
path: str = "assets/temp/mp3",
max_length: int = DEFUALT_MAX_LENGTH,
):
self.tts_module = tts_module()
self.reddit_object = reddit_object
self.path = path
self.max_length = max_length
self.length = 0
def run(self) -> Tuple[int, int]:
Path(self.path).mkdir(parents=True, exist_ok=True)
# This file needs to be removed in case this post does not use post text, so that it won't appear in the final video
try:
Path(f"{self.path}/posttext.mp3").unlink()
except OSError:
pass
print_step("Saving Text to MP3 files...")
self.call_tts("title", process_text(self.reddit_object["thread_title"]))
processed_text = process_text(self.reddit_object["thread_post"])
if (
processed_text != ""
and settings.config["settings"]["storymode"] == True
):
self.call_tts("posttext", processed_text)
idx = None
for idx, comment in track(enumerate(self.reddit_object["comments"]), "Saving..."):
# ! Stop creating mp3 files if the length is greater than max length.
if self.length > self.max_length:
break
if (
len(comment["comment_body"]) > self.tts_module.max_chars
): # Split the comment if it is too long
self.split_post(comment["comment_body"], idx) # Split the comment
else: # If the comment is not too long, just call the tts engine
self.call_tts(f"{idx}", process_text(comment["comment_body"]))
print_substep("Saved Text to MP3 files successfully.", style="bold green")
return self.length, idx
def split_post(self, text: str, idx: int):
split_files = []
split_text = [
x.group().strip()
for x in re.finditer(
r" *(((.|\n){0," + str(self.tts_module.max_chars) + "})(\.|.$))", text
)
]
offset = 0
for idy, text_cut in enumerate(split_text):
# print(f"{idx}-{idy}: {text_cut}\n")
new_text = process_text(text_cut)
if not new_text or new_text.isspace():
offset += 1
continue
self.call_tts(f"{idx}-{idy - offset}.part", new_text)
split_files.append(AudioFileClip(f"{self.path}/{idx}-{idy - offset}.part.mp3"))
CompositeAudioClip([concatenate_audioclips(split_files)]).write_audiofile(
f"{self.path}/{idx}.mp3", fps=44100, verbose=False, logger=None
)
for i in split_files:
name = i.filename
i.close()
Path(name).unlink()
# for i in range(0, idy + 1):
# print(f"Cleaning up {self.path}/{idx}-{i}.part.mp3")
# Path(f"{self.path}/{idx}-{i}.part.mp3").unlink()
def call_tts(self, filename: str, text: str):
self.tts_module.run(text, filepath=f"{self.path}/{filename}.mp3")
# try:
# self.length += MP3(f"{self.path}/{filename}.mp3").info.length
# except (MutagenError, HeaderNotFoundError):
# self.length += sox.file_info.duration(f"{self.path}/{filename}.mp3")
try:
clip = AudioFileClip(f"{self.path}/{filename}.mp3")
self.length += clip.duration
clip.close()
except:
self.length = 0
def process_text(text: str):
lang = settings.config["reddit"]["thread"]["post_lang"]
new_text = sanitize_text(text)
if lang:
print_substep("Translating Text...")
translated_text = ts.google(text, to_language=lang)
new_text = sanitize_text(translated_text)
return new_text