Merge branch 'master' into develop

# Conflicts:
#	main.py
#	reddit/subreddit.py
#	requirements.txt
#	utils/subreddit.py
pull/1410/head
Simon 2 years ago
commit 5e7c05977f

@ -1,15 +1,18 @@
import re
from prawcore.exceptions import ResponseException
from utils import settings
import praw
from praw.models import MoreComments
from prawcore.exceptions import ResponseException
from utils import settings
from utils.console import print_step, print_substep
from utils.subreddit import get_subreddit_undone
from utils.videos import check_done
from utils.voice import sanitize_text
from utils.posttextparser import posttextparser
from utils.ai_methods import sort_by_similarity
def get_subreddit_threads(POST_ID: str):
@ -50,6 +53,7 @@ def get_subreddit_threads(POST_ID: str):
# Ask user for subreddit input
print_step("Getting subreddit threads...")
similarity_score = 0
if not settings.config["reddit"]["thread"][
"subreddit"
]: # note to user. you can have multiple subreddits via reddit.subreddit("redditdev+learnpython")
@ -76,6 +80,20 @@ def get_subreddit_threads(POST_ID: str):
if POST_ID: # would only be called if there are multiple queued posts
submission = reddit.submission(id=POST_ID)
elif (
settings.config["reddit"]["thread"]["post_id"]
and len(str(settings.config["reddit"]["thread"]["post_id"]).split("+")) == 1
):
submission = reddit.submission(id=settings.config["reddit"]["thread"]["post_id"])
elif settings.config["ai"]["ai_similarity_enabled"]: # ai sorting based on comparison
threads = subreddit.hot(limit=50)
keywords = settings.config["ai"]["ai_similarity_keywords"].split(',')
keywords = [keyword.strip() for keyword in keywords]
# Reformat the keywords for printing
keywords_print = ", ".join(keywords)
print(f'Sorting threads by similarity to the given keywords: {keywords_print}')
threads, similarity_scores = sort_by_similarity(threads, keywords)
submission, similarity_score = get_subreddit_undone(threads, subreddit, similarity_scores=similarity_scores)
else:
threads = subreddit.hot(limit=25)
submission = get_subreddit_undone(threads, subreddit)
@ -99,7 +117,7 @@ def get_subreddit_threads(POST_ID: str):
exit()
submission = check_done(submission) # double-checking
upvotes = submission.score
ratio = submission.upvote_ratio * 100
num_comments = submission.num_comments
@ -110,6 +128,8 @@ def get_subreddit_threads(POST_ID: str):
print_substep(f"Thread has {upvotes} upvotes", style="bold blue")
print_substep(f"Thread has a upvote ratio of {ratio}%", style="bold blue")
print_substep(f"Thread has {num_comments} comments", style="bold blue")
if similarity_score:
print_substep(f"Thread has a similarity score up to {round(similarity_score * 100)}%", style="bold blue")
content["thread_url"] = threadurl
content["thread_title"] = submission.title

@ -16,4 +16,6 @@ tomlkit==0.11.4
Flask==2.2.2
clean-text==0.6.0
unidecode==1.3.2
spacy==3.4.1
spacy==3.4.1
torch==1.12.1
transformers==4.25.1

@ -16,6 +16,9 @@ post_lang = { default = "", optional = true, explanation = "The language you wou
min_comments = { default = 20, optional = false, nmin = 10, type = "int", explanation = "The minimum number of comments a post should have to be included. default is 20", example = 29, oob_error = "the minimum number of comments should be between 15 and 999999" }
#post_url = { optional = true, default = "", regex = "^https:\\/\\/www\\.reddit\\.com\\/r\\/[a-zA-Z0-9]+\\/comments\\/[a-zA-Z0-9]+\\/[a-zA-Z0-9_]+\\/$", explanation = "Not working currently Use if you want to use a specific post.", example = "https://www.reddit.com/r/buildapc/comments/yzh07p/have_you_switched_to_windows_11/" }
[ai]
ai_similarity_enabled = {optional = true, option = [true, false], default = false, type = "bool", explanation = "Threads read from Reddit are sorted based on their similarity to the keywords given below"}
ai_similarity_keywords = {optional = true, type="str", example= 'Elon Musk, Twitter, Stocks', explanation = "Every keyword or even sentence, seperated with comma, is used to sort the reddit threads based on similarity"}
[settings]
allow_nsfw = { optional = false, type = "bool", default = false, example = false, options = [true, false, ], explanation = "Whether to allow NSFW content, True or False" }

@ -0,0 +1,58 @@
import numpy as np
from transformers import AutoTokenizer, AutoModel
import torch
# Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] # First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# This function sort the given threads based on their total similarity with the given keywords
def sort_by_similarity(thread_objects, keywords):
# Initialize tokenizer + model.
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
# Transform the generator to a list of Submission Objects, so we can sort later based on context similarity to
# keywords
thread_objects = list(thread_objects)
threads_sentences = []
for i, thread in enumerate(thread_objects):
threads_sentences.append(' '.join([thread.title, thread.selftext]))
# Threads inference
encoded_threads = tokenizer(threads_sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
threads_embeddings = model(**encoded_threads)
threads_embeddings = mean_pooling(threads_embeddings, encoded_threads['attention_mask'])
# Keywords inference
encoded_keywords = tokenizer(keywords, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
keywords_embeddings = model(**encoded_keywords)
keywords_embeddings = mean_pooling(keywords_embeddings, encoded_keywords['attention_mask'])
# Compare every keyword w/ every thread embedding
threads_embeddings_tensor = torch.tensor(threads_embeddings)
total_scores = torch.zeros(threads_embeddings_tensor.shape[0])
cosine_similarity = torch.nn.CosineSimilarity()
for keyword_embedding in keywords_embeddings:
keyword_embedding = torch.tensor(keyword_embedding).repeat(threads_embeddings_tensor.shape[0], 1)
similarity = cosine_similarity(keyword_embedding, threads_embeddings_tensor)
total_scores += similarity
similarity_scores, indices = torch.sort(total_scores, descending=True)
threads_sentences = np.array(threads_sentences)[indices.numpy()]
thread_objects = np.array(thread_objects)[indices.numpy()].tolist()
#print('Similarity Thread Ranking')
#for i, thread in enumerate(thread_objects):
# print(f'{i}) {threads_sentences[i]} score {similarity_scores[i]}')
return thread_objects, similarity_scores

@ -3,9 +3,10 @@ from os.path import exists
from utils import settings
from utils.console import print_substep
from utils.ai_methods import sort_by_similarity
def get_subreddit_undone(submissions: list, subreddit, times_checked=0):
def get_subreddit_undone(submissions: list, subreddit, times_checked=0, similarity_scores=None):
"""_summary_
Args:
@ -15,6 +16,11 @@ def get_subreddit_undone(submissions: list, subreddit, times_checked=0):
Returns:
Any: The submission that has not been done
"""
# Second try of getting a valid Submission
if times_checked and settings.config["ai"]["ai_similarity_enabled"]:
print('Sorting based on similarity for a different date filter and thread limit..')
submissions = sort_by_similarity(submissions, keywords=settings.config["ai"]["ai_similarity_enabled"])
# recursively checks if the top submission in the list was already done.
if not exists("./video_creation/data/videos.json"):
with open("./video_creation/data/videos.json", "w+") as f:
@ -23,7 +29,7 @@ def get_subreddit_undone(submissions: list, subreddit, times_checked=0):
"./video_creation/data/videos.json", "r", encoding="utf-8"
) as done_vids_raw:
done_videos = json.load(done_vids_raw)
for submission in submissions:
for i, submission in enumerate(submissions):
if already_done(done_videos, submission):
continue
if submission.over_18:
@ -45,6 +51,8 @@ def get_subreddit_undone(submissions: list, subreddit, times_checked=0):
continue
if settings.config["settings"]["storymode"] and not submission.is_self:
continue
if similarity_scores is not None:
return submission, similarity_scores[i].item()
return submission
print("all submissions have been done going by top submission order")
VALID_TIME_FILTERS = [

Loading…
Cancel
Save