You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
361 lines
12 KiB
361 lines
12 KiB
/*
|
|
* QR Code generator library (C)
|
|
*
|
|
* Copyright (c) Project Nayuki
|
|
* https://www.nayuki.io/page/qr-code-generator-library
|
|
*
|
|
* (MIT License)
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy of
|
|
* this software and associated documentation files (the "Software"), to deal in
|
|
* the Software without restriction, including without limitation the rights to
|
|
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
|
* the Software, and to permit persons to whom the Software is furnished to do so,
|
|
* subject to the following conditions:
|
|
* - The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
* - The Software is provided "as is", without warranty of any kind, express or
|
|
* implied, including but not limited to the warranties of merchantability,
|
|
* fitness for a particular purpose and noninfringement. In no event shall the
|
|
* authors or copyright holders be liable for any claim, damages or other
|
|
* liability, whether in an action of contract, tort or otherwise, arising from,
|
|
* out of or in connection with the Software or the use or other dealings in the
|
|
* Software.
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include "qrcodegen.h"
|
|
|
|
|
|
/*---- Forward declarations for private functions ----*/
|
|
|
|
static bool getModule(const uint8_t qrcode[], int size, int x, int y);
|
|
static void setModule(uint8_t qrcode[], int size, int x, int y, bool isBlack);
|
|
static void setModuleBounded(uint8_t qrcode[], int size, int x, int y, bool isBlack);
|
|
|
|
static void initializeFunctionalModules(int version, uint8_t qrcode[]);
|
|
static void drawWhiteFunctionModules(uint8_t qrcode[], int version);
|
|
static void drawFormatBits(enum qrcodegen_Ecc ecl, enum qrcodegen_Mask mask, uint8_t qrcode[], int size);
|
|
static int getAlignmentPatternPositions(int version, uint8_t result[7]);
|
|
|
|
static void calcReedSolomonGenerator(int degree, uint8_t result[]);
|
|
static void calcReedSolomonRemainder(const uint8_t data[], int dataLen, const uint8_t generator[], int degree, uint8_t result[]);
|
|
static uint8_t finiteFieldMultiply(uint8_t x, uint8_t y);
|
|
|
|
|
|
|
|
/*---- Function implementations ----*/
|
|
|
|
// Public function - see documentation comment in header file.
|
|
bool qrcodegen_isAlphanumeric(const char *text) {
|
|
for (; *text != '\0'; text++) {
|
|
char c = *text;
|
|
if (('0' <= c && c <= '9') || ('A' <= c && c <= 'Z'))
|
|
continue;
|
|
else switch (c) {
|
|
case ' ':
|
|
case '$':
|
|
case '%':
|
|
case '*':
|
|
case '+':
|
|
case '-':
|
|
case '.':
|
|
case '/':
|
|
case ':':
|
|
continue;
|
|
default:
|
|
return false;
|
|
}
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
// Public function - see documentation comment in header file.
|
|
bool qrcodegen_isNumeric(const char *text) {
|
|
for (; *text != '\0'; text++) {
|
|
char c = *text;
|
|
if (c < '0' || c > '9')
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
// Public function - see documentation comment in header file.
|
|
int qrcodegen_getSize(int version) {
|
|
assert(1 <= version && version <= 40);
|
|
return version * 4 + 17;
|
|
}
|
|
|
|
|
|
// Public function - see documentation comment in header file.
|
|
bool qrcodegen_getModule(const uint8_t qrcode[], int version, int x, int y) {
|
|
int size = qrcodegen_getSize(version);
|
|
return (0 <= x && x < size && 0 <= y && y < size) && getModule(qrcode, size, x, y);
|
|
}
|
|
|
|
|
|
// Gets the module at the given coordinates, which must be in bounds.
|
|
static bool getModule(const uint8_t qrcode[], int size, int x, int y) {
|
|
assert(21 <= size && size <= 177 && 0 <= x && x < size && 0 <= y && y < size);
|
|
int index = y * size + x;
|
|
int bitIndex = index & 7;
|
|
int byteIndex = index >> 3;
|
|
return ((qrcode[byteIndex] >> bitIndex) & 1) != 0;
|
|
}
|
|
|
|
|
|
// Sets the module at the given coordinates, which must be in bounds.
|
|
static void setModule(uint8_t qrcode[], int size, int x, int y, bool isBlack) {
|
|
assert(21 <= size && size <= 177 && 0 <= x && x < size && 0 <= y && y < size);
|
|
int index = y * size + x;
|
|
int bitIndex = index & 7;
|
|
int byteIndex = index >> 3;
|
|
if (isBlack)
|
|
qrcode[byteIndex] |= 1 << bitIndex;
|
|
else
|
|
qrcode[byteIndex] &= (1 << bitIndex) ^ 0xFF;
|
|
}
|
|
|
|
|
|
// Sets the module at the given coordinates, doing nothing if out of bounds.
|
|
static void setModuleBounded(uint8_t qrcode[], int size, int x, int y, bool isBlack) {
|
|
if (0 <= x && x < size && 0 <= y && y < size)
|
|
setModule(qrcode, size, x, y, isBlack);
|
|
}
|
|
|
|
|
|
// Fills the given QR Code grid with white modules for the given version's size,
|
|
// then marks every function module in the QR Code as black.
|
|
static void initializeFunctionalModules(int version, uint8_t qrcode[]) {
|
|
// Initialize QR Code
|
|
int size = qrcodegen_getSize(version);
|
|
memset(qrcode, 0, (size * size + 7) / 8 * sizeof(qrcode[0]));
|
|
|
|
// Fill horizontal and vertical timing patterns
|
|
for (int i = 0; i < size; i++) {
|
|
setModule(qrcode, size, 6, i, true);
|
|
setModule(qrcode, size, i, 6, true);
|
|
}
|
|
|
|
// Fill 3 finder patterns (all corners except bottom right)
|
|
for (int i = 0; i < 8; i++) {
|
|
for (int j = 0; j < 8; j++) {
|
|
setModule(qrcode, size, j, i, true);
|
|
setModule(qrcode, size, size - 1 - j, i, true);
|
|
setModule(qrcode, size, j, size - 1 - i, true);
|
|
}
|
|
}
|
|
|
|
// Fill numerous alignment patterns
|
|
uint8_t alignPatPos[7] = {0};
|
|
int numAlign = getAlignmentPatternPositions(version, alignPatPos);
|
|
for (int i = 0; i < numAlign; i++) {
|
|
for (int j = 0; j < numAlign; j++) {
|
|
if ((i == 0 && j == 0) || (i == 0 && j == numAlign - 1) || (i == numAlign - 1 && j == 0))
|
|
continue; // Skip the three finder corners
|
|
else {
|
|
for (int k = -2; k <= 2; k++) {
|
|
for (int l = -2; l <= 2; l++)
|
|
setModule(qrcode, size, alignPatPos[i] + l, alignPatPos[j] + k, true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Fill format bits
|
|
for (int i = 0; i < 8; i++) {
|
|
setModule(qrcode, size, i, 8, true);
|
|
setModule(qrcode, size, 8, i, true);
|
|
setModule(qrcode, size, size - 1 - i, 8, true);
|
|
setModule(qrcode, size, 8, size - 1 - i, true);
|
|
}
|
|
setModule(qrcode, size, 8, 8, true);
|
|
|
|
// Fill version
|
|
if (version >= 7) {
|
|
for (int i = 0; i < 3; i++) {
|
|
for (int j = 0; j < 6; j++) {
|
|
int k = size - 11 + i;
|
|
setModule(qrcode, size, k, j, true);
|
|
setModule(qrcode, size, j, k, true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Draws white function modules and possibly some black modules onto the given QR Code, without changing
|
|
// non-function modules. This does not draw the format bits. This requires all function modules to be previously
|
|
// marked black (namely by initializeFunctionalModules()), because this may skip redrawing black function modules.
|
|
static void drawWhiteFunctionModules(uint8_t qrcode[], int version) {
|
|
// Draw horizontal and vertical timing patterns
|
|
int size = qrcodegen_getSize(version);
|
|
for (int i = 7; i < size - 7; i += 2) {
|
|
setModule(qrcode, size, 6, i, false);
|
|
setModule(qrcode, size, i, 6, false);
|
|
}
|
|
|
|
// Draw 3 finder patterns
|
|
for (int i = -4; i <= 4; i++) {
|
|
for (int j = -4; j <= 4; j++) {
|
|
int dist = abs(i);
|
|
if (abs(j) > dist)
|
|
dist = abs(j);
|
|
if (dist == 2 || dist == 4) {
|
|
setModuleBounded(qrcode, size, 3 + j, 3 + i, false);
|
|
setModuleBounded(qrcode, size, size - 4 + j, 3 + i, false);
|
|
setModuleBounded(qrcode, size, 3 + j, size - 4 + i, false);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Draw numerous alignment patterns
|
|
uint8_t alignPatPos[7] = {0};
|
|
int numAlign = getAlignmentPatternPositions(version, alignPatPos);
|
|
for (int i = 0; i < numAlign; i++) {
|
|
for (int j = 0; j < numAlign; j++) {
|
|
if ((i == 0 && j == 0) || (i == 0 && j == numAlign - 1) || (i == numAlign - 1 && j == 0))
|
|
continue; // Skip the three finder corners
|
|
else {
|
|
for (int k = -1; k <= 1; k++) {
|
|
for (int l = -1; l <= 1; l++)
|
|
setModule(qrcode, size, alignPatPos[i] + l, alignPatPos[j] + k, k == 0 && l == 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Draw version block
|
|
if (version >= 7) {
|
|
// Calculate error correction code and pack bits
|
|
int rem = version; // version is uint6, in the range [7, 40]
|
|
for (int i = 0; i < 12; i++)
|
|
rem = (rem << 1) ^ ((rem >> 11) * 0x1F25);
|
|
long data = (long)version << 12 | rem; // uint18
|
|
assert(data >> 18 == 0);
|
|
|
|
// Draw two copies
|
|
for (int i = 0; i < 3; i++) {
|
|
for (int j = 0; j < 6; j++) {
|
|
int k = size - 11 + i;
|
|
setModule(qrcode, size, k, j, (data & 1) != 0);
|
|
setModule(qrcode, size, j, k, (data & 1) != 0);
|
|
data >>= 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Based on the given ECC level and mask, this calculates the format bits
|
|
// and draws their black and white modules onto the given QR Code.
|
|
static void drawFormatBits(enum qrcodegen_Ecc ecl, enum qrcodegen_Mask mask, uint8_t qrcode[], int size) {
|
|
// Calculate error correction code and pack bits
|
|
assert(0 <= (int)mask && (int)mask <= 7);
|
|
int data;
|
|
switch (ecl) {
|
|
case qrcodegen_Ecc_LOW : data = 1; break;
|
|
case qrcodegen_Ecc_MEDIUM : data = 0; break;
|
|
case qrcodegen_Ecc_QUARTILE: data = 3; break;
|
|
case qrcodegen_Ecc_HIGH : data = 2; break;
|
|
default: assert(false);
|
|
}
|
|
data = data << 3 | (int)mask; // ecl-derived value is uint2, mask is uint3
|
|
int rem = data;
|
|
for (int i = 0; i < 10; i++)
|
|
rem = (rem << 1) ^ ((rem >> 9) * 0x537);
|
|
data = data << 10 | rem;
|
|
data ^= 0x5412; // uint15
|
|
assert(data >> 15 == 0);
|
|
|
|
// Draw first copy
|
|
for (int i = 0; i <= 5; i++)
|
|
setModule(qrcode, size, 8, i, ((data >> i) & 1) != 0);
|
|
setModule(qrcode, size, 8, 7, ((data >> 6) & 1) != 0);
|
|
setModule(qrcode, size, 8, 8, ((data >> 7) & 1) != 0);
|
|
setModule(qrcode, size, 7, 8, ((data >> 8) & 1) != 0);
|
|
for (int i = 9; i < 15; i++)
|
|
setModule(qrcode, size, 14 - i, 8, ((data >> i) & 1) != 0);
|
|
|
|
// Draw second copy
|
|
for (int i = 0; i <= 7; i++)
|
|
setModule(qrcode, size, size - 1 - i, 8, ((data >> i) & 1) != 0);
|
|
for (int i = 8; i < 15; i++)
|
|
setModule(qrcode, size, 8, size - 15 + i, ((data >> i) & 1) != 0);
|
|
setModule(qrcode, size, 8, size - 8, true);
|
|
}
|
|
|
|
|
|
// Calculates the positions of alignment patterns in ascending order for the given version number,
|
|
// storing them to the given array and returning an array length in the range [0, 7].
|
|
static int getAlignmentPatternPositions(int version, uint8_t result[7]) {
|
|
if (version == 1)
|
|
return 0;
|
|
int size = qrcodegen_getSize(version);
|
|
int numAlign = version / 7 + 2;
|
|
int step;
|
|
if (version != 32)
|
|
step = (version * 4 + numAlign * 2 + 1) / (2 * numAlign - 2) * 2; // ceil((size - 13) / (2*numAlign - 2)) * 2
|
|
else // C-C-C-Combo breaker!
|
|
step = 26;
|
|
for (int i = numAlign - 1, pos = size - 7; i >= 1; i--, pos -= step)
|
|
result[i] = pos;
|
|
result[0] = 6;
|
|
return numAlign;
|
|
}
|
|
|
|
|
|
// Calculates the Reed-Solomon generator polynomial of the given degree, storing in result[0 : degree].
|
|
static void calcReedSolomonGenerator(int degree, uint8_t result[]) {
|
|
// Start with the monomial x^0
|
|
assert(1 <= degree && degree <= 30);
|
|
memset(result, 0, degree * sizeof(result[0]));
|
|
result[degree - 1] = 1;
|
|
|
|
// Compute the product polynomial (x - r^0) * (x - r^1) * (x - r^2) * ... * (x - r^{degree-1}),
|
|
// drop the highest term, and store the rest of the coefficients in order of descending powers.
|
|
// Note that r = 0x02, which is a generator element of this field GF(2^8/0x11D).
|
|
int root = 1;
|
|
for (int i = 0; i < degree; i++) {
|
|
// Multiply the current product by (x - r^i)
|
|
for (int j = 0; j < degree; j++) {
|
|
result[j] = finiteFieldMultiply(result[j], (uint8_t)root);
|
|
if (j + 1 < degree)
|
|
result[j] ^= result[j + 1];
|
|
}
|
|
root = (root << 1) ^ ((root >> 7) * 0x11D); // Multiply by 0x02 mod GF(2^8/0x11D)
|
|
}
|
|
}
|
|
|
|
|
|
// Calculates the remainder of the polynomial data[0 : dataLen] when divided by the generator[0 : degree], where all
|
|
// polynomials are in big endian and the generator has an implicit leading 1 term, storing the result in result[0 : degree].
|
|
static void calcReedSolomonRemainder(const uint8_t data[], int dataLen, const uint8_t generator[], int degree, uint8_t result[]) {
|
|
// Perform polynomial division
|
|
assert(1 <= degree && degree <= 30);
|
|
memset(result, 0, degree * sizeof(result[0]));
|
|
for (int i = 0; i < dataLen; i++) {
|
|
uint8_t factor = data[i] ^ result[0];
|
|
memmove(&result[0], &result[1], (degree - 1) * sizeof(result[0]));
|
|
result[degree - 1] = 0;
|
|
for (int j = 0; j < degree; j++)
|
|
result[j] ^= finiteFieldMultiply(generator[j], factor);
|
|
}
|
|
}
|
|
|
|
|
|
// Returns the product of the two given field elements modulo GF(2^8/0x11D). All argument values are valid.
|
|
static uint8_t finiteFieldMultiply(uint8_t x, uint8_t y) {
|
|
// Russian peasant multiplication
|
|
uint8_t z = 0;
|
|
for (int i = 7; i >= 0; i--) {
|
|
z = (z << 1) ^ ((z >> 7) * 0x11D);
|
|
z ^= ((y >> i) & 1) * x;
|
|
}
|
|
return z;
|
|
}
|