You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1301 lines
45 KiB
1301 lines
45 KiB
/*
|
|
* QR Code generator library (Rust)
|
|
*
|
|
* Copyright (c) Project Nayuki. (MIT License)
|
|
* https://www.nayuki.io/page/qr-code-generator-library
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy of
|
|
* this software and associated documentation files (the "Software"), to deal in
|
|
* the Software without restriction, including without limitation the rights to
|
|
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
|
* the Software, and to permit persons to whom the Software is furnished to do so,
|
|
* subject to the following conditions:
|
|
* - The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
* - The Software is provided "as is", without warranty of any kind, express or
|
|
* implied, including but not limited to the warranties of merchantability,
|
|
* fitness for a particular purpose and noninfringement. In no event shall the
|
|
* authors or copyright holders be liable for any claim, damages or other
|
|
* liability, whether in an action of contract, tort or otherwise, arising from,
|
|
* out of or in connection with the Software or the use or other dealings in the
|
|
* Software.
|
|
*/
|
|
|
|
|
|
//! Generates QR Codes from text strings and byte arrays.
|
|
//!
|
|
//! This project aims to be the best, clearest QR Code generator library.
|
|
//! The primary goals are flexible options and absolute correctness.
|
|
//! Secondary goals are compact implementation size and good documentation comments.
|
|
//!
|
|
//! Home page with live JavaScript demo, extensive descriptions, and competitor comparisons:
|
|
//! [https://www.nayuki.io/page/qr-code-generator-library](https://www.nayuki.io/page/qr-code-generator-library)
|
|
//!
|
|
//! # Features
|
|
//!
|
|
//! Core features:
|
|
//!
|
|
//! - Available in 7 programming languages, all with nearly equal functionality: Java, JavaScript, TypeScript, Python, C++, C, Rust
|
|
//! - Significantly shorter code but more documentation comments compared to competing libraries
|
|
//! - Supports encoding all 40 versions (sizes) and all 4 error correction levels, as per the QR Code Model 2 standard
|
|
//! - Output formats: Raw modules/pixels of the QR symbol, SVG XML string
|
|
//! - Encodes numeric and special-alphanumeric text in less space than general text
|
|
//! - Open source code under the permissive MIT License
|
|
//!
|
|
//! Manual parameters:
|
|
//!
|
|
//! - User can specify minimum and maximum version numbers allowed, then library will automatically choose smallest version in the range that fits the data
|
|
//! - User can specify mask pattern manually, otherwise library will automatically evaluate all 8 masks and select the optimal one
|
|
//! - User can specify absolute error correction level, or allow the library to boost it if it doesn't increase the version number
|
|
//! - User can create a list of data segments manually and add ECI segments
|
|
//!
|
|
//! # Examples
|
|
//!
|
|
//! ```
|
|
//! extern crate qrcodegen;
|
|
//! use qrcodegen::QrCode;
|
|
//! use qrcodegen::QrCodeEcc;
|
|
//! use qrcodegen::QrSegment;
|
|
//! ```
|
|
//!
|
|
//! Simple operation:
|
|
//!
|
|
//! ```
|
|
//! let qr = QrCode::encode_text("Hello, world!",
|
|
//! QrCodeEcc::Medium).unwrap();
|
|
//! let svg = qr.to_svg_string(4);
|
|
//! ```
|
|
//!
|
|
//! Manual operation:
|
|
//!
|
|
//! ```
|
|
//! let chrs: Vec<char> = "3141592653589793238462643383".chars().collect();
|
|
//! let segs = QrSegment::make_segments(&chrs);
|
|
//! let qr = QrCode::encode_segments_advanced(
|
|
//! &segs, QrCodeEcc::High, 5, 5, Some(Mask::new(2)), false).unwrap();
|
|
//! for y in 0 .. qr.size() {
|
|
//! for x in 0 .. qr.size() {
|
|
//! (... paint qr.get_module(x, y) ...)
|
|
//! }
|
|
//! }
|
|
//! ```
|
|
|
|
|
|
/*---- QrCode functionality ----*/
|
|
|
|
/// A QR Code symbol, which is a type of two-dimension barcode.
|
|
///
|
|
/// Invented by Denso Wave and described in the ISO/IEC 18004 standard.
|
|
///
|
|
/// Instances of this struct represent an immutable square grid of black and white cells.
|
|
/// The impl provides static factory functions to create a QR Code from text or binary data.
|
|
/// The struct and impl cover the QR Code Model 2 specification, supporting all versions
|
|
/// (sizes) from 1 to 40, all 4 error correction levels, and 4 character encoding modes.
|
|
///
|
|
/// Ways to create a QR Code object:
|
|
///
|
|
/// - High level: Take the payload data and call `QrCode::encode_text()` or `QrCode::encode_binary()`.
|
|
/// - Mid level: Custom-make the list of segments and call
|
|
/// `QrCode::encode_segments()` or `QrCode::encode_segments_advanced()`.
|
|
/// - Low level: Custom-make the array of data codeword bytes (including segment
|
|
/// headers and final padding, excluding error correction codewords), supply the
|
|
/// appropriate version number, and call the `QrCode::encode_codewords()` constructor.
|
|
///
|
|
/// (Note that all ways require supplying the desired error correction level.)
|
|
#[derive(Clone)]
|
|
pub struct QrCode {
|
|
|
|
// Scalar parameters:
|
|
|
|
// The version number of this QR Code, which is between 1 and 40 (inclusive).
|
|
// This determines the size of this barcode.
|
|
version: Version,
|
|
|
|
// The width and height of this QR Code, measured in modules, between
|
|
// 21 and 177 (inclusive). This is equal to version * 4 + 17.
|
|
size: i32,
|
|
|
|
// The error correction level used in this QR Code.
|
|
errorcorrectionlevel: QrCodeEcc,
|
|
|
|
// The index of the mask pattern used in this QR Code, which is between 0 and 7 (inclusive).
|
|
// Even if a QR Code is created with automatic masking requested (mask = None),
|
|
// the resulting object still has a mask value between 0 and 7.
|
|
mask: Mask,
|
|
|
|
// Grids of modules/pixels, with dimensions of size*size:
|
|
|
|
// The modules of this QR Code (false = white, true = black).
|
|
// Immutable after constructor finishes. Accessed through get_module().
|
|
modules: Vec<bool>,
|
|
|
|
// Indicates function modules that are not subjected to masking. Discarded when constructor finishes.
|
|
isfunction: Vec<bool>,
|
|
|
|
}
|
|
|
|
|
|
impl QrCode {
|
|
|
|
/*---- Static factory functions (high level) ----*/
|
|
|
|
/// Returns a QR Code representing the given Unicode text string at the given error correction level.
|
|
///
|
|
/// As a conservative upper bound, this function is guaranteed to succeed for strings that have 738 or fewer Unicode
|
|
/// code points (not UTF-8 code units) if the low error correction level is used. The smallest possible
|
|
/// QR Code version is automatically chosen for the output. The ECC level of the result may be higher than
|
|
/// the ecl argument if it can be done without increasing the version.
|
|
///
|
|
/// Returns a wrapped `QrCode` if successful, or `Err` if the
|
|
/// data is too long to fit in any version at the given ECC level.
|
|
pub fn encode_text(text: &str, ecl: QrCodeEcc) -> Result<Self,DataTooLong> {
|
|
let chrs: Vec<char> = text.chars().collect();
|
|
let segs: Vec<QrSegment> = QrSegment::make_segments(&chrs);
|
|
QrCode::encode_segments(&segs, ecl)
|
|
}
|
|
|
|
|
|
/// Returns a QR Code representing the given binary data at the given error correction level.
|
|
///
|
|
/// This function always encodes using the binary segment mode, not any text mode. The maximum number of
|
|
/// bytes allowed is 2953. The smallest possible QR Code version is automatically chosen for the output.
|
|
/// The ECC level of the result may be higher than the ecl argument if it can be done without increasing the version.
|
|
///
|
|
/// Returns a wrapped `QrCode` if successful, or `Err` if the
|
|
/// data is too long to fit in any version at the given ECC level.
|
|
pub fn encode_binary(data: &[u8], ecl: QrCodeEcc) -> Result<Self,DataTooLong> {
|
|
let segs: Vec<QrSegment> = vec![QrSegment::make_bytes(data)];
|
|
QrCode::encode_segments(&segs, ecl)
|
|
}
|
|
|
|
|
|
/*---- Static factory functions (mid level) ----*/
|
|
|
|
/// Returns a QR Code representing the given segments at the given error correction level.
|
|
///
|
|
/// The smallest possible QR Code version is automatically chosen for the output. The ECC level
|
|
/// of the result may be higher than the ecl argument if it can be done without increasing the version.
|
|
///
|
|
/// This function allows the user to create a custom sequence of segments that switches
|
|
/// between modes (such as alphanumeric and byte) to encode text in less space.
|
|
/// This is a mid-level API; the high-level API is `encode_text()` and `encode_binary()`.
|
|
///
|
|
/// Returns a wrapped `QrCode` if successful, or `Err` if the
|
|
/// data is too long to fit in any version at the given ECC level.
|
|
pub fn encode_segments(segs: &[QrSegment], ecl: QrCodeEcc) -> Result<Self,DataTooLong> {
|
|
QrCode::encode_segments_advanced(segs, ecl, QrCode_MIN_VERSION, QrCode_MAX_VERSION, None, true)
|
|
}
|
|
|
|
|
|
/// Returns a QR Code representing the given segments with the given encoding parameters.
|
|
///
|
|
/// The smallest possible QR Code version within the given range is automatically
|
|
/// chosen for the output. Iff boostecl is `true`, then the ECC level of the result
|
|
/// may be higher than the ecl argument if it can be done without increasing the
|
|
/// version. The mask number is either between 0 to 7 (inclusive) to force that
|
|
/// mask, or `None` to automatically choose an appropriate mask (which may be slow).
|
|
///
|
|
/// This function allows the user to create a custom sequence of segments that switches
|
|
/// between modes (such as alphanumeric and byte) to encode text in less space.
|
|
/// This is a mid-level API; the high-level API is `encode_text()` and `encode_binary()`.
|
|
///
|
|
/// Returns a wrapped `QrCode` if successful, or `Err` if the data is too
|
|
/// long to fit in any version in the given range at the given ECC level.
|
|
pub fn encode_segments_advanced(segs: &[QrSegment], mut ecl: QrCodeEcc,
|
|
minversion: Version, maxversion: Version, mask: Option<Mask>, boostecl: bool) -> Result<Self,DataTooLong> {
|
|
assert!(minversion.value() <= maxversion.value(), "Invalid value");
|
|
|
|
// Find the minimal version number to use
|
|
let mut version = minversion;
|
|
let datausedbits: usize;
|
|
loop {
|
|
// Number of data bits available
|
|
let datacapacitybits: usize = QrCode::get_num_data_codewords(version, ecl) * 8;
|
|
let dataused: Option<usize> = QrSegment::get_total_bits(segs, version);
|
|
if let Some(n) = dataused {
|
|
if n <= datacapacitybits {
|
|
datausedbits = n;
|
|
break; // This version number is found to be suitable
|
|
}
|
|
}
|
|
if version.value() >= maxversion.value() { // All versions in the range could not fit the given data
|
|
let msg: String = match dataused {
|
|
None => String::from("Segment too long"),
|
|
Some(n) => format!("Data length = {} bits, Max capacity = {} bits",
|
|
n, datacapacitybits),
|
|
};
|
|
return Err(DataTooLong(msg));
|
|
}
|
|
version = Version::new(version.value() + 1);
|
|
}
|
|
|
|
// Increase the error correction level while the data still fits in the current version number
|
|
for newecl in &[QrCodeEcc::Medium, QrCodeEcc::Quartile, QrCodeEcc::High] { // From low to high
|
|
if boostecl && datausedbits <= QrCode::get_num_data_codewords(version, *newecl) * 8 {
|
|
ecl = *newecl;
|
|
}
|
|
}
|
|
|
|
// Concatenate all segments to create the data bit string
|
|
let mut bb = BitBuffer(Vec::new());
|
|
for seg in segs {
|
|
bb.append_bits(seg.mode.mode_bits(), 4);
|
|
bb.append_bits(seg.numchars as u32, seg.mode.num_char_count_bits(version));
|
|
bb.0.extend_from_slice(&seg.data);
|
|
}
|
|
assert_eq!(bb.0.len(), datausedbits);
|
|
|
|
// Add terminator and pad up to a byte if applicable
|
|
let datacapacitybits: usize = QrCode::get_num_data_codewords(version, ecl) * 8;
|
|
assert!(bb.0.len() <= datacapacitybits);
|
|
let numzerobits = std::cmp::min(4, datacapacitybits - bb.0.len());
|
|
bb.append_bits(0, numzerobits as u8);
|
|
let numzerobits = bb.0.len().wrapping_neg() & 7;
|
|
bb.append_bits(0, numzerobits as u8);
|
|
assert_eq!(bb.0.len() % 8, 0, "Assertion error");
|
|
|
|
// Pad with alternating bytes until data capacity is reached
|
|
for padbyte in [0xEC, 0x11].iter().cycle() {
|
|
if bb.0.len() >= datacapacitybits {
|
|
break;
|
|
}
|
|
bb.append_bits(*padbyte, 8);
|
|
}
|
|
|
|
// Pack bits into bytes in big endian
|
|
let mut datacodewords = vec![0u8; bb.0.len() / 8];
|
|
for (i, bit) in bb.0.iter().enumerate() {
|
|
datacodewords[i >> 3] |= (*bit as u8) << (7 - (i & 7));
|
|
}
|
|
|
|
// Create the QR Code object
|
|
Ok(QrCode::encode_codewords(version, ecl, &datacodewords, mask))
|
|
}
|
|
|
|
|
|
/*---- Constructor (low level) ----*/
|
|
|
|
/// Creates a new QR Code with the given version number,
|
|
/// error correction level, data codeword bytes, and mask number.
|
|
///
|
|
/// This is a low-level API that most users should not use directly.
|
|
/// A mid-level API is the `encode_segments()` function.
|
|
pub fn encode_codewords(ver: Version, ecl: QrCodeEcc, datacodewords: &[u8], mask: Option<Mask>) -> Self {
|
|
// Initialize fields
|
|
let size: usize = (ver.value() as usize) * 4 + 17;
|
|
let mut result = Self {
|
|
version: ver,
|
|
size: size as i32,
|
|
mask: Mask::new(0), // Dummy value
|
|
errorcorrectionlevel: ecl,
|
|
modules : vec![false; size * size], // Initially all white
|
|
isfunction: vec![false; size * size],
|
|
};
|
|
|
|
// Compute ECC, draw modules, do masking
|
|
result.draw_function_patterns();
|
|
let allcodewords: Vec<u8> = result.add_ecc_and_interleave(datacodewords);
|
|
result.draw_codewords(&allcodewords);
|
|
result.handle_constructor_masking(mask);
|
|
result.isfunction.clear();
|
|
result.isfunction.shrink_to_fit();
|
|
result
|
|
}
|
|
|
|
|
|
/*---- Public methods ----*/
|
|
|
|
/// Returns this QR Code's version, in the range [1, 40].
|
|
pub fn version(&self) -> Version {
|
|
self.version
|
|
}
|
|
|
|
|
|
/// Returns this QR Code's size, in the range [21, 177].
|
|
pub fn size(&self) -> i32 {
|
|
self.size
|
|
}
|
|
|
|
|
|
/// Returns this QR Code's error correction level.
|
|
pub fn error_correction_level(&self) -> QrCodeEcc {
|
|
self.errorcorrectionlevel
|
|
}
|
|
|
|
|
|
/// Returns this QR Code's mask, in the range [0, 7].
|
|
pub fn mask(&self) -> Mask {
|
|
self.mask
|
|
}
|
|
|
|
|
|
/// Returns the color of the module (pixel) at the given coordinates,
|
|
/// which is `false` for white or `true` for black.
|
|
///
|
|
/// The top left corner has the coordinates (x=0, y=0). If the given
|
|
/// coordinates are out of bounds, then `false` (white) is returned.
|
|
pub fn get_module(&self, x: i32, y: i32) -> bool {
|
|
0 <= x && x < self.size && 0 <= y && y < self.size && self.module(x, y)
|
|
}
|
|
|
|
|
|
// Returns the color of the module at the given coordinates, which must be in bounds.
|
|
fn module(&self, x: i32, y: i32) -> bool {
|
|
self.modules[(y * self.size + x) as usize]
|
|
}
|
|
|
|
|
|
// Returns a mutable reference to the module's color at the given coordinates, which must be in bounds.
|
|
fn module_mut(&mut self, x: i32, y: i32) -> &mut bool {
|
|
&mut self.modules[(y * self.size + x) as usize]
|
|
}
|
|
|
|
|
|
/// Returns a string of SVG code for an image depicting
|
|
/// this QR Code, with the given number of border modules.
|
|
///
|
|
/// The string always uses Unix newlines (\n), regardless of the platform.
|
|
pub fn to_svg_string(&self, border: i32) -> String {
|
|
assert!(border >= 0, "Border must be non-negative");
|
|
let mut result = String::new();
|
|
result += "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n";
|
|
result += "<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\" \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n";
|
|
let dimension = self.size.checked_add(border.checked_mul(2).unwrap()).unwrap();
|
|
result += &format!(
|
|
"<svg xmlns=\"http://www.w3.org/2000/svg\" version=\"1.1\" viewBox=\"0 0 {0} {0}\" stroke=\"none\">\n", dimension);
|
|
result += "\t<rect width=\"100%\" height=\"100%\" fill=\"#FFFFFF\"/>\n";
|
|
result += "\t<path d=\"";
|
|
for y in 0 .. self.size {
|
|
for x in 0 .. self.size {
|
|
if self.get_module(x, y) {
|
|
if x != 0 || y != 0 {
|
|
result += " ";
|
|
}
|
|
result += &format!("M{},{}h1v1h-1z", x + border, y + border);
|
|
}
|
|
}
|
|
}
|
|
result += "\" fill=\"#000000\"/>\n";
|
|
result += "</svg>\n";
|
|
result
|
|
}
|
|
|
|
|
|
/*---- Private helper methods for constructor: Drawing function modules ----*/
|
|
|
|
// Reads this object's version field, and draws and marks all function modules.
|
|
fn draw_function_patterns(&mut self) {
|
|
// Draw horizontal and vertical timing patterns
|
|
let size: i32 = self.size;
|
|
for i in 0 .. size {
|
|
self.set_function_module(6, i, i % 2 == 0);
|
|
self.set_function_module(i, 6, i % 2 == 0);
|
|
}
|
|
|
|
// Draw 3 finder patterns (all corners except bottom right; overwrites some timing modules)
|
|
self.draw_finder_pattern(3, 3);
|
|
self.draw_finder_pattern(size - 4, 3);
|
|
self.draw_finder_pattern(3, size - 4);
|
|
|
|
// Draw numerous alignment patterns
|
|
let alignpatpos: Vec<i32> = self.get_alignment_pattern_positions();
|
|
let numalign: usize = alignpatpos.len();
|
|
for i in 0 .. numalign {
|
|
for j in 0 .. numalign {
|
|
// Don't draw on the three finder corners
|
|
if !(i == 0 && j == 0 || i == 0 && j == numalign - 1 || i == numalign - 1 && j == 0) {
|
|
self.draw_alignment_pattern(alignpatpos[i], alignpatpos[j]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Draw configuration data
|
|
self.draw_format_bits(Mask::new(0)); // Dummy mask value; overwritten later in the constructor
|
|
self.draw_version();
|
|
}
|
|
|
|
|
|
// Draws two copies of the format bits (with its own error correction code)
|
|
// based on the given mask and this object's error correction level field.
|
|
fn draw_format_bits(&mut self, mask: Mask) {
|
|
// Calculate error correction code and pack bits
|
|
let size: i32 = self.size;
|
|
// errcorrlvl is uint2, mask is uint3
|
|
let data: u32 = self.errorcorrectionlevel.format_bits() << 3 | (mask.value() as u32);
|
|
let mut rem: u32 = data;
|
|
for _ in 0 .. 10 {
|
|
rem = (rem << 1) ^ ((rem >> 9) * 0x537);
|
|
}
|
|
let bits: u32 = (data << 10 | rem) ^ 0x5412; // uint15
|
|
assert_eq!(bits >> 15, 0, "Assertion error");
|
|
|
|
// Draw first copy
|
|
for i in 0 .. 6 {
|
|
self.set_function_module(8, i, get_bit(bits, i));
|
|
}
|
|
self.set_function_module(8, 7, get_bit(bits, 6));
|
|
self.set_function_module(8, 8, get_bit(bits, 7));
|
|
self.set_function_module(7, 8, get_bit(bits, 8));
|
|
for i in 9 .. 15 {
|
|
self.set_function_module(14 - i, 8, get_bit(bits, i));
|
|
}
|
|
|
|
// Draw second copy
|
|
for i in 0 .. 8 {
|
|
self.set_function_module(size - 1 - i, 8, get_bit(bits, i));
|
|
}
|
|
for i in 8 .. 15 {
|
|
self.set_function_module(8, size - 15 + i, get_bit(bits, i));
|
|
}
|
|
self.set_function_module(8, size - 8, true); // Always black
|
|
}
|
|
|
|
|
|
// Draws two copies of the version bits (with its own error correction code),
|
|
// based on this object's version field, iff 7 <= version <= 40.
|
|
fn draw_version(&mut self) {
|
|
if self.version.value() < 7 {
|
|
return;
|
|
}
|
|
|
|
// Calculate error correction code and pack bits
|
|
let mut rem: u32 = self.version.value() as u32; // version is uint6, in the range [7, 40]
|
|
for _ in 0 .. 12 {
|
|
rem = (rem << 1) ^ ((rem >> 11) * 0x1F25);
|
|
}
|
|
let bits: u32 = (self.version.value() as u32) << 12 | rem; // uint18
|
|
assert!(bits >> 18 == 0, "Assertion error");
|
|
|
|
// Draw two copies
|
|
for i in 0 .. 18 {
|
|
let bit: bool = get_bit(bits, i);
|
|
let a: i32 = self.size - 11 + i % 3;
|
|
let b: i32 = i / 3;
|
|
self.set_function_module(a, b, bit);
|
|
self.set_function_module(b, a, bit);
|
|
}
|
|
}
|
|
|
|
|
|
// Draws a 9*9 finder pattern including the border separator,
|
|
// with the center module at (x, y). Modules can be out of bounds.
|
|
fn draw_finder_pattern(&mut self, x: i32, y: i32) {
|
|
for dy in -4 .. 5 {
|
|
for dx in -4 .. 5 {
|
|
let xx: i32 = x + dx;
|
|
let yy: i32 = y + dy;
|
|
if 0 <= xx && xx < self.size && 0 <= yy && yy < self.size {
|
|
let dist: i32 = std::cmp::max(dx.abs(), dy.abs()); // Chebyshev/infinity norm
|
|
self.set_function_module(xx, yy, dist != 2 && dist != 4);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Draws a 5*5 alignment pattern, with the center module
|
|
// at (x, y). All modules must be in bounds.
|
|
fn draw_alignment_pattern(&mut self, x: i32, y: i32) {
|
|
for dy in -2 .. 3 {
|
|
for dx in -2 .. 3 {
|
|
self.set_function_module(x + dx, y + dy, std::cmp::max(dx.abs(), dy.abs()) != 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Sets the color of a module and marks it as a function module.
|
|
// Only used by the constructor. Coordinates must be in bounds.
|
|
fn set_function_module(&mut self, x: i32, y: i32, isblack: bool) {
|
|
*self.module_mut(x, y) = isblack;
|
|
self.isfunction[(y * self.size + x) as usize] = true;
|
|
}
|
|
|
|
|
|
/*---- Private helper methods for constructor: Codewords and masking ----*/
|
|
|
|
// Returns a new byte string representing the given data with the appropriate error correction
|
|
// codewords appended to it, based on this object's version and error correction level.
|
|
fn add_ecc_and_interleave(&self, data: &[u8]) -> Vec<u8> {
|
|
let ver = self.version;
|
|
let ecl = self.errorcorrectionlevel;
|
|
assert_eq!(data.len(), QrCode::get_num_data_codewords(ver, ecl), "Illegal argument");
|
|
|
|
// Calculate parameter numbers
|
|
let numblocks: usize = QrCode::table_get(&NUM_ERROR_CORRECTION_BLOCKS, ver, ecl);
|
|
let blockecclen: usize = QrCode::table_get(&ECC_CODEWORDS_PER_BLOCK , ver, ecl);
|
|
let rawcodewords: usize = QrCode::get_num_raw_data_modules(ver) / 8;
|
|
let numshortblocks: usize = numblocks - rawcodewords % numblocks;
|
|
let shortblocklen: usize = rawcodewords / numblocks;
|
|
|
|
// Split data into blocks and append ECC to each block
|
|
let mut blocks = Vec::<Vec<u8>>::with_capacity(numblocks);
|
|
let rs = ReedSolomonGenerator::new(blockecclen);
|
|
let mut k: usize = 0;
|
|
for i in 0 .. numblocks {
|
|
let mut dat = data[k .. k + shortblocklen - blockecclen + ((i >= numshortblocks) as usize)].to_vec();
|
|
k += dat.len();
|
|
let ecc: Vec<u8> = rs.get_remainder(&dat);
|
|
if i < numshortblocks {
|
|
dat.push(0);
|
|
}
|
|
dat.extend_from_slice(&ecc);
|
|
blocks.push(dat);
|
|
}
|
|
|
|
// Interleave (not concatenate) the bytes from every block into a single sequence
|
|
let mut result = Vec::<u8>::with_capacity(rawcodewords);
|
|
for i in 0 .. shortblocklen + 1 {
|
|
for j in 0 .. numblocks {
|
|
// Skip the padding byte in short blocks
|
|
if i != shortblocklen - blockecclen || j >= numshortblocks {
|
|
result.push(blocks[j][i]);
|
|
}
|
|
}
|
|
}
|
|
result
|
|
}
|
|
|
|
|
|
// Draws the given sequence of 8-bit codewords (data and error correction) onto the entire
|
|
// data area of this QR Code. Function modules need to be marked off before this is called.
|
|
fn draw_codewords(&mut self, data: &[u8]) {
|
|
assert_eq!(data.len(), QrCode::get_num_raw_data_modules(self.version) / 8, "Illegal argument");
|
|
|
|
let mut i: usize = 0; // Bit index into the data
|
|
// Do the funny zigzag scan
|
|
let mut right: i32 = self.size - 1;
|
|
while right >= 1 { // Index of right column in each column pair
|
|
if right == 6 {
|
|
right = 5;
|
|
}
|
|
for vert in 0 .. self.size { // Vertical counter
|
|
for j in 0 .. 2 {
|
|
let x: i32 = right - j; // Actual x coordinate
|
|
let upward: bool = (right + 1) & 2 == 0;
|
|
let y: i32 = if upward { self.size - 1 - vert } else { vert }; // Actual y coordinate
|
|
if !self.isfunction[(y * self.size + x) as usize] && i < data.len() * 8 {
|
|
*self.module_mut(x, y) = get_bit(data[i >> 3] as u32, 7 - ((i & 7) as i32));
|
|
i += 1;
|
|
}
|
|
// If this QR Code has any remainder bits (0 to 7), they were assigned as
|
|
// 0/false/white by the constructor and are left unchanged by this method
|
|
}
|
|
}
|
|
right -= 2;
|
|
}
|
|
assert_eq!(i, data.len() * 8, "Assertion error");
|
|
}
|
|
|
|
|
|
// XORs the codeword modules in this QR Code with the given mask pattern.
|
|
// The function modules must be marked and the codeword bits must be drawn
|
|
// before masking. Due to the arithmetic of XOR, calling applyMask() with
|
|
// the same mask value a second time will undo the mask. A final well-formed
|
|
// QR Code needs exactly one (not zero, two, etc.) mask applied.
|
|
fn apply_mask(&mut self, mask: Mask) {
|
|
let mask: u8 = mask.value();
|
|
for y in 0 .. self.size {
|
|
for x in 0 .. self.size {
|
|
let invert: bool = match mask {
|
|
0 => (x + y) % 2 == 0,
|
|
1 => y % 2 == 0,
|
|
2 => x % 3 == 0,
|
|
3 => (x + y) % 3 == 0,
|
|
4 => (x / 3 + y / 2) % 2 == 0,
|
|
5 => x * y % 2 + x * y % 3 == 0,
|
|
6 => (x * y % 2 + x * y % 3) % 2 == 0,
|
|
7 => ((x + y) % 2 + x * y % 3) % 2 == 0,
|
|
_ => unreachable!(),
|
|
};
|
|
*self.module_mut(x, y) ^= invert & !self.isfunction[(y * self.size + x) as usize];
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// A messy helper function for the constructors. This QR Code must be in an unmasked state when this
|
|
// method is called. The given argument is the requested mask, which is -1 for auto or 0 to 7 for fixed.
|
|
// This method applies and returns the actual mask chosen, from 0 to 7.
|
|
fn handle_constructor_masking(&mut self, mut mask: Option<Mask>) {
|
|
if mask.is_none() { // Automatically choose best mask
|
|
let mut minpenalty: i32 = std::i32::MAX;
|
|
for i in 0u8 .. 8 {
|
|
let newmask = Mask::new(i);
|
|
self.draw_format_bits(newmask);
|
|
self.apply_mask(newmask);
|
|
let penalty: i32 = self.get_penalty_score();
|
|
if penalty < minpenalty {
|
|
mask = Some(newmask);
|
|
minpenalty = penalty;
|
|
}
|
|
self.apply_mask(newmask); // Undoes the mask due to XOR
|
|
}
|
|
}
|
|
let msk: Mask = mask.unwrap();
|
|
self.draw_format_bits(msk); // Overwrite old format bits
|
|
self.apply_mask(msk); // Apply the final choice of mask
|
|
self.mask = msk;
|
|
}
|
|
|
|
|
|
// Calculates and returns the penalty score based on state of this QR Code's current modules.
|
|
// This is used by the automatic mask choice algorithm to find the mask pattern that yields the lowest score.
|
|
fn get_penalty_score(&self) -> i32 {
|
|
let mut result: i32 = 0;
|
|
let size: i32 = self.size;
|
|
|
|
// Adjacent modules in row having same color
|
|
for y in 0 .. size {
|
|
let mut colorx = false;
|
|
let mut runx: i32 = 0;
|
|
for x in 0 .. size {
|
|
if x == 0 || self.module(x, y) != colorx {
|
|
colorx = self.module(x, y);
|
|
runx = 1;
|
|
} else {
|
|
runx += 1;
|
|
if runx == 5 {
|
|
result += PENALTY_N1;
|
|
} else if runx > 5 {
|
|
result += 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// Adjacent modules in column having same color
|
|
for x in 0 .. size {
|
|
let mut colory = false;
|
|
let mut runy: i32 = 0;
|
|
for y in 0 .. size {
|
|
if y == 0 || self.module(x, y) != colory {
|
|
colory = self.module(x, y);
|
|
runy = 1;
|
|
} else {
|
|
runy += 1;
|
|
if runy == 5 {
|
|
result += PENALTY_N1;
|
|
} else if runy > 5 {
|
|
result += 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// 2*2 blocks of modules having same color
|
|
for y in 0 .. size - 1 {
|
|
for x in 0 .. size - 1 {
|
|
let color: bool = self.module(x, y);
|
|
if color == self.module(x + 1, y) &&
|
|
color == self.module(x, y + 1) &&
|
|
color == self.module(x + 1, y + 1) {
|
|
result += PENALTY_N2;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Finder-like pattern in rows
|
|
for y in 0 .. size {
|
|
let mut bits: u32 = 0;
|
|
for x in 0 .. size {
|
|
bits = ((bits << 1) & 0x7FF) | (self.module(x, y) as u32);
|
|
if x >= 10 && (bits == 0x05D || bits == 0x5D0) { // Needs 11 bits accumulated
|
|
result += PENALTY_N3;
|
|
}
|
|
}
|
|
}
|
|
// Finder-like pattern in columns
|
|
for x in 0 .. size {
|
|
let mut bits: u32 = 0;
|
|
for y in 0 .. size {
|
|
bits = ((bits << 1) & 0x7FF) | (self.module(x, y) as u32);
|
|
if y >= 10 && (bits == 0x05D || bits == 0x5D0) { // Needs 11 bits accumulated
|
|
result += PENALTY_N3;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Balance of black and white modules
|
|
let mut black: i32 = 0;
|
|
for color in &self.modules {
|
|
black += *color as i32;
|
|
}
|
|
let total: i32 = size * size; // Note that size is odd, so black/total != 1/2
|
|
// Compute the smallest integer k >= 0 such that (45-5k)% <= black/total <= (55+5k)%
|
|
let k: i32 = ((black * 20 - total * 10).abs() + total - 1) / total - 1;
|
|
result += k * PENALTY_N4;
|
|
result
|
|
}
|
|
|
|
|
|
/*---- Private helper functions ----*/
|
|
|
|
// Returns an ascending list of positions of alignment patterns for this version number.
|
|
// Each position is in the range [0,177), and are used on both the x and y axes.
|
|
// This could be implemented as lookup table of 40 variable-length lists of unsigned bytes.
|
|
fn get_alignment_pattern_positions(&self) -> Vec<i32> {
|
|
let ver = self.version.value();
|
|
if ver == 1 {
|
|
vec![]
|
|
} else {
|
|
let numalign: i32 = (ver as i32) / 7 + 2;
|
|
let step: i32 = if ver == 32 { 26 } else
|
|
{((ver as i32)*4 + numalign*2 + 1) / (numalign*2 - 2) * 2};
|
|
let mut result: Vec<i32> = (0 .. numalign - 1).map(
|
|
|i| self.size - 7 - i * step).collect();
|
|
result.push(6);
|
|
result.reverse();
|
|
result
|
|
}
|
|
}
|
|
|
|
|
|
// Returns the number of data bits that can be stored in a QR Code of the given version number, after
|
|
// all function modules are excluded. This includes remainder bits, so it might not be a multiple of 8.
|
|
// The result is in the range [208, 29648]. This could be implemented as a 40-entry lookup table.
|
|
fn get_num_raw_data_modules(ver: Version) -> usize {
|
|
let ver = ver.value() as usize;
|
|
let mut result: usize = (16 * ver + 128) * ver + 64;
|
|
if ver >= 2 {
|
|
let numalign: usize = ver / 7 + 2;
|
|
result -= (25 * numalign - 10) * numalign - 55;
|
|
if ver >= 7 {
|
|
result -= 36;
|
|
}
|
|
}
|
|
result
|
|
}
|
|
|
|
|
|
// Returns the number of 8-bit data (i.e. not error correction) codewords contained in any
|
|
// QR Code of the given version number and error correction level, with remainder bits discarded.
|
|
// This stateless pure function could be implemented as a (40*4)-cell lookup table.
|
|
fn get_num_data_codewords(ver: Version, ecl: QrCodeEcc) -> usize {
|
|
QrCode::get_num_raw_data_modules(ver) / 8
|
|
- QrCode::table_get(&ECC_CODEWORDS_PER_BLOCK , ver, ecl)
|
|
* QrCode::table_get(&NUM_ERROR_CORRECTION_BLOCKS, ver, ecl)
|
|
}
|
|
|
|
|
|
// Returns an entry from the given table based on the given values.
|
|
fn table_get(table: &'static [[i8; 41]; 4], ver: Version, ecl: QrCodeEcc) -> usize {
|
|
table[ecl.ordinal()][ver.value() as usize] as usize
|
|
}
|
|
|
|
}
|
|
|
|
|
|
/*---- Cconstants and tables ----*/
|
|
|
|
/// The minimum version number supported in the QR Code Model 2 standard.
|
|
pub const QrCode_MIN_VERSION: Version = Version( 1);
|
|
|
|
/// The maximum version number supported in the QR Code Model 2 standard.
|
|
pub const QrCode_MAX_VERSION: Version = Version(40);
|
|
|
|
|
|
// For use in get_penalty_score(), when evaluating which mask is best.
|
|
const PENALTY_N1: i32 = 3;
|
|
const PENALTY_N2: i32 = 3;
|
|
const PENALTY_N3: i32 = 40;
|
|
const PENALTY_N4: i32 = 10;
|
|
|
|
|
|
static ECC_CODEWORDS_PER_BLOCK: [[i8; 41]; 4] = [
|
|
// Version: (note that index 0 is for padding, and is set to an illegal value)
|
|
//0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 Error correction level
|
|
[-1, 7, 10, 15, 20, 26, 18, 20, 24, 30, 18, 20, 24, 26, 30, 22, 24, 28, 30, 28, 28, 28, 28, 30, 30, 26, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30], // Low
|
|
[-1, 10, 16, 26, 18, 24, 16, 18, 22, 22, 26, 30, 22, 22, 24, 24, 28, 28, 26, 26, 26, 26, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28], // Medium
|
|
[-1, 13, 22, 18, 26, 18, 24, 18, 22, 20, 24, 28, 26, 24, 20, 30, 24, 28, 28, 26, 30, 28, 30, 30, 30, 30, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30], // Quartile
|
|
[-1, 17, 28, 22, 16, 22, 28, 26, 26, 24, 28, 24, 28, 22, 24, 24, 30, 28, 28, 26, 28, 30, 24, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30], // High
|
|
];
|
|
|
|
static NUM_ERROR_CORRECTION_BLOCKS: [[i8; 41]; 4] = [
|
|
// Version: (note that index 0 is for padding, and is set to an illegal value)
|
|
//0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 Error correction level
|
|
[-1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 4, 4, 4, 6, 6, 6, 6, 7, 8, 8, 9, 9, 10, 12, 12, 12, 13, 14, 15, 16, 17, 18, 19, 19, 20, 21, 22, 24, 25], // Low
|
|
[-1, 1, 1, 1, 2, 2, 4, 4, 4, 5, 5, 5, 8, 9, 9, 10, 10, 11, 13, 14, 16, 17, 17, 18, 20, 21, 23, 25, 26, 28, 29, 31, 33, 35, 37, 38, 40, 43, 45, 47, 49], // Medium
|
|
[-1, 1, 1, 2, 2, 4, 4, 6, 6, 8, 8, 8, 10, 12, 16, 12, 17, 16, 18, 21, 20, 23, 23, 25, 27, 29, 34, 34, 35, 38, 40, 43, 45, 48, 51, 53, 56, 59, 62, 65, 68], // Quartile
|
|
[-1, 1, 1, 2, 4, 4, 4, 5, 6, 8, 8, 11, 11, 16, 16, 18, 16, 19, 21, 25, 25, 25, 34, 30, 32, 35, 37, 40, 42, 45, 48, 51, 54, 57, 60, 63, 66, 70, 74, 77, 81], // High
|
|
];
|
|
|
|
|
|
|
|
/*---- QrCodeEcc functionality ----*/
|
|
|
|
/// The error correction level in a QR Code symbol.
|
|
#[derive(Clone, Copy)]
|
|
pub enum QrCodeEcc {
|
|
/// The QR Code can tolerate about 7% erroneous codewords.
|
|
Low ,
|
|
/// The QR Code can tolerate about 15% erroneous codewords.
|
|
Medium ,
|
|
/// The QR Code can tolerate about 25% erroneous codewords.
|
|
Quartile,
|
|
/// The QR Code can tolerate about 30% erroneous codewords.
|
|
High ,
|
|
}
|
|
|
|
|
|
impl QrCodeEcc {
|
|
|
|
// Returns an unsigned 2-bit integer (in the range 0 to 3).
|
|
fn ordinal(&self) -> usize {
|
|
use QrCodeEcc::*;
|
|
match *self {
|
|
Low => 0,
|
|
Medium => 1,
|
|
Quartile => 2,
|
|
High => 3,
|
|
}
|
|
}
|
|
|
|
|
|
// Returns an unsigned 2-bit integer (in the range 0 to 3).
|
|
fn format_bits(&self) -> u32 {
|
|
use QrCodeEcc::*;
|
|
match *self {
|
|
Low => 1,
|
|
Medium => 0,
|
|
Quartile => 3,
|
|
High => 2,
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*---- ReedSolomonGenerator functionality ----*/
|
|
|
|
// Computes the Reed-Solomon error correction codewords for a sequence of data codewords
|
|
// at a given degree. Objects are immutable, and the state only depends on the degree.
|
|
// This struct and impl exist because each data block in a QR Code shares the same the divisor polynomial.
|
|
struct ReedSolomonGenerator {
|
|
|
|
// Coefficients of the divisor polynomial, stored from highest to lowest power, excluding the leading term which
|
|
// is always 1. For example the polynomial x^3 + 255x^2 + 8x + 93 is stored as the uint8 array {255, 8, 93}.
|
|
coefficients: Vec<u8>,
|
|
|
|
}
|
|
|
|
|
|
impl ReedSolomonGenerator {
|
|
|
|
// Creates a Reed-Solomon ECC generator for the given degree. This could be implemented
|
|
// as a lookup table over all possible parameter values, instead of as an algorithm.
|
|
fn new(degree: usize) -> Self {
|
|
assert!(1 <= degree && degree <= 255, "Degree out of range");
|
|
// Start with the monomial x^0
|
|
let mut coefs = vec![0u8; degree - 1];
|
|
coefs.push(1);
|
|
|
|
// Compute the product polynomial (x - r^0) * (x - r^1) * (x - r^2) * ... * (x - r^{degree-1}),
|
|
// drop the highest term, and store the rest of the coefficients in order of descending powers.
|
|
// Note that r = 0x02, which is a generator element of this field GF(2^8/0x11D).
|
|
let mut root: u8 = 1;
|
|
for _ in 0 .. degree { // Unused variable i
|
|
// Multiply the current product by (x - r^i)
|
|
for j in 0 .. degree {
|
|
coefs[j] = ReedSolomonGenerator::multiply(coefs[j], root);
|
|
if j + 1 < coefs.len() {
|
|
coefs[j] ^= coefs[j + 1];
|
|
}
|
|
}
|
|
root = ReedSolomonGenerator::multiply(root, 0x02);
|
|
}
|
|
Self { coefficients: coefs }
|
|
}
|
|
|
|
|
|
// Computes and returns the Reed-Solomon error correction codewords for the given sequence of data codewords.
|
|
fn get_remainder(&self, data: &[u8]) -> Vec<u8> {
|
|
// Compute the remainder by performing polynomial division
|
|
let mut result = vec![0u8; self.coefficients.len()];
|
|
for b in data {
|
|
let factor: u8 = b ^ result.remove(0);
|
|
result.push(0);
|
|
for (x, y) in result.iter_mut().zip(self.coefficients.iter()) {
|
|
*x ^= ReedSolomonGenerator::multiply(*y, factor);
|
|
}
|
|
}
|
|
result
|
|
}
|
|
|
|
|
|
// Returns the product of the two given field elements modulo GF(2^8/0x11D). The arguments and result
|
|
// are unsigned 8-bit integers. This could be implemented as a lookup table of 256*256 entries of uint8.
|
|
fn multiply(x: u8, y: u8) -> u8 {
|
|
// Russian peasant multiplication
|
|
let mut z: u8 = 0;
|
|
for i in (0 .. 8).rev() {
|
|
z = (z << 1) ^ ((z >> 7) * 0x1D);
|
|
z ^= ((y >> i) & 1) * x;
|
|
}
|
|
z
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*---- QrSegment functionality ----*/
|
|
|
|
/// A segment of character/binary/control data in a QR Code symbol.
|
|
///
|
|
/// Instances of this struct are immutable.
|
|
///
|
|
/// The mid-level way to create a segment is to take the payload data
|
|
/// and call a static factory function such as `QrSegment::make_numeric()`.
|
|
/// The low-level way to create a segment is to custom-make the bit buffer
|
|
/// and call the `QrSegment::new()` constructor with appropriate values.
|
|
///
|
|
/// This segment struct imposes no length restrictions, but QR Codes have restrictions.
|
|
/// Even in the most favorable conditions, a QR Code can only hold 7089 characters of data.
|
|
/// Any segment longer than this is meaningless for the purpose of generating QR Codes.
|
|
#[derive(Clone)]
|
|
pub struct QrSegment {
|
|
|
|
// The mode indicator of this segment. Accessed through mode().
|
|
mode: QrSegmentMode,
|
|
|
|
// The length of this segment's unencoded data. Measured in characters for
|
|
// numeric/alphanumeric/kanji mode, bytes for byte mode, and 0 for ECI mode.
|
|
// Not the same as the data's bit length. Accessed through num_chars().
|
|
numchars: usize,
|
|
|
|
// The data bits of this segment. Accessed through data().
|
|
data: Vec<bool>,
|
|
|
|
}
|
|
|
|
|
|
impl QrSegment {
|
|
|
|
/*---- Static factory functions (mid level) ----*/
|
|
|
|
/// Returns a segment representing the given binary data encoded in byte mode.
|
|
///
|
|
/// All input byte slices are acceptable.
|
|
///
|
|
/// Any text string can be converted to UTF-8 bytes and encoded as a byte mode segment.
|
|
pub fn make_bytes(data: &[u8]) -> Self {
|
|
let mut bb = BitBuffer(Vec::with_capacity(data.len() * 8));
|
|
for b in data {
|
|
bb.append_bits(*b as u32, 8);
|
|
}
|
|
QrSegment::new(QrSegmentMode::Byte, data.len(), bb.0)
|
|
}
|
|
|
|
|
|
/// Returns a segment representing the given string of decimal digits encoded in numeric mode.
|
|
///
|
|
/// Panics if the string contains non-digit characters.
|
|
pub fn make_numeric(text: &[char]) -> Self {
|
|
let mut bb = BitBuffer(Vec::with_capacity(text.len() * 3 + (text.len() + 2) / 3));
|
|
let mut accumdata: u32 = 0;
|
|
let mut accumcount: u8 = 0;
|
|
for c in text {
|
|
assert!('0' <= *c && *c <= '9', "String contains non-numeric characters");
|
|
accumdata = accumdata * 10 + ((*c as u32) - ('0' as u32));
|
|
accumcount += 1;
|
|
if accumcount == 3 {
|
|
bb.append_bits(accumdata, 10);
|
|
accumdata = 0;
|
|
accumcount = 0;
|
|
}
|
|
}
|
|
if accumcount > 0 { // 1 or 2 digits remaining
|
|
bb.append_bits(accumdata, accumcount * 3 + 1);
|
|
}
|
|
QrSegment::new(QrSegmentMode::Numeric, text.len(), bb.0)
|
|
}
|
|
|
|
|
|
/// Returns a segment representing the given text string encoded in alphanumeric mode.
|
|
///
|
|
/// The characters allowed are: 0 to 9, A to Z (uppercase only), space,
|
|
/// dollar, percent, asterisk, plus, hyphen, period, slash, colon.
|
|
///
|
|
/// Panics if the string contains non-encodable characters.
|
|
pub fn make_alphanumeric(text: &[char]) -> Self {
|
|
let mut bb = BitBuffer(Vec::with_capacity(text.len() * 5 + (text.len() + 1) / 2));
|
|
let mut accumdata: u32 = 0;
|
|
let mut accumcount: u32 = 0;
|
|
for c in text {
|
|
let i = ALPHANUMERIC_CHARSET.iter().position(|x| *x == *c)
|
|
.expect("String contains unencodable characters in alphanumeric mode");
|
|
accumdata = accumdata * 45 + (i as u32);
|
|
accumcount += 1;
|
|
if accumcount == 2 {
|
|
bb.append_bits(accumdata, 11);
|
|
accumdata = 0;
|
|
accumcount = 0;
|
|
}
|
|
}
|
|
if accumcount > 0 { // 1 character remaining
|
|
bb.append_bits(accumdata, 6);
|
|
}
|
|
QrSegment::new(QrSegmentMode::Alphanumeric, text.len(), bb.0)
|
|
}
|
|
|
|
|
|
/// Returns a list of zero or more segments to represent the given Unicode text string.
|
|
///
|
|
/// The result may use various segment modes and switch
|
|
/// modes to optimize the length of the bit stream.
|
|
pub fn make_segments(text: &[char]) -> Vec<Self> {
|
|
if text.is_empty() {
|
|
vec![]
|
|
} else if QrSegment::is_numeric(text) {
|
|
vec![QrSegment::make_numeric(text)]
|
|
} else if QrSegment::is_alphanumeric(text) {
|
|
vec![QrSegment::make_alphanumeric(text)]
|
|
} else {
|
|
let s: String = text.iter().cloned().collect();
|
|
vec![QrSegment::make_bytes(s.as_bytes())]
|
|
}
|
|
}
|
|
|
|
|
|
/// Returns a segment representing an Extended Channel Interpretation
|
|
/// (ECI) designator with the given assignment value.
|
|
pub fn make_eci(assignval: u32) -> Self {
|
|
let mut bb = BitBuffer(Vec::with_capacity(24));
|
|
if assignval < (1 << 7) {
|
|
bb.append_bits(assignval, 8);
|
|
} else if assignval < (1 << 14) {
|
|
bb.append_bits(2, 2);
|
|
bb.append_bits(assignval, 14);
|
|
} else if assignval < 1_000_000 {
|
|
bb.append_bits(6, 3);
|
|
bb.append_bits(assignval, 21);
|
|
} else {
|
|
panic!("ECI assignment value out of range");
|
|
}
|
|
QrSegment::new(QrSegmentMode::Eci, 0, bb.0)
|
|
}
|
|
|
|
|
|
/*---- Constructor (low level) ----*/
|
|
|
|
/// Creates a new QR Code segment with the given attributes and data.
|
|
///
|
|
/// The character count (numchars) must agree with the mode and
|
|
/// the bit buffer length, but the constraint isn't checked.
|
|
pub fn new(mode: QrSegmentMode, numchars: usize, data: Vec<bool>) -> Self {
|
|
Self {
|
|
mode: mode,
|
|
numchars: numchars,
|
|
data: data,
|
|
}
|
|
}
|
|
|
|
|
|
/*---- Instance field getters ----*/
|
|
|
|
/// Returns the mode indicator of this segment.
|
|
pub fn mode(&self) -> QrSegmentMode {
|
|
self.mode
|
|
}
|
|
|
|
|
|
/// Returns the character count field of this segment.
|
|
pub fn num_chars(&self) -> usize {
|
|
self.numchars
|
|
}
|
|
|
|
|
|
/// Returns the data bits of this segment.
|
|
pub fn data(&self) -> &Vec<bool> {
|
|
&self.data
|
|
}
|
|
|
|
|
|
/*---- Other static functions ----*/
|
|
|
|
// Calculates and returns the number of bits needed to encode the given
|
|
// segments at the given version. The result is None if a segment has too many
|
|
// characters to fit its length field, or the total bits exceeds usize::MAX.
|
|
fn get_total_bits(segs: &[Self], version: Version) -> Option<usize> {
|
|
let mut result: usize = 0;
|
|
for seg in segs {
|
|
let ccbits = seg.mode.num_char_count_bits(version);
|
|
if seg.numchars >= 1 << ccbits {
|
|
return None; // The segment's length doesn't fit the field's bit width
|
|
}
|
|
match result.checked_add(4 + (ccbits as usize) + seg.data.len()) {
|
|
None => return None, // The sum will overflow a usize type
|
|
Some(val) => result = val,
|
|
}
|
|
}
|
|
Some(result)
|
|
}
|
|
|
|
|
|
// Tests whether the given string can be encoded as a segment in alphanumeric mode.
|
|
// A string is encodable iff each character is in the following set: 0 to 9, A to Z
|
|
// (uppercase only), space, dollar, percent, asterisk, plus, hyphen, period, slash, colon.
|
|
fn is_alphanumeric(text: &[char]) -> bool {
|
|
text.iter().all(|c| ALPHANUMERIC_CHARSET.contains(c))
|
|
}
|
|
|
|
|
|
// Tests whether the given string can be encoded as a segment in numeric mode.
|
|
// A string is encodable iff each character is in the range 0 to 9.
|
|
fn is_numeric(text: &[char]) -> bool {
|
|
text.iter().all(|c| '0' <= *c && *c <= '9')
|
|
}
|
|
|
|
}
|
|
|
|
|
|
// The set of all legal characters in alphanumeric mode,
|
|
// where each character value maps to the index in the string.
|
|
static ALPHANUMERIC_CHARSET: [char; 45] = ['0','1','2','3','4','5','6','7','8','9',
|
|
'A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z',
|
|
' ','$','%','*','+','-','.','/',':'];
|
|
|
|
|
|
|
|
/*---- QrSegmentMode functionality ----*/
|
|
|
|
/// Describes how a segment's data bits are interpreted.
|
|
#[derive(Clone, Copy)]
|
|
pub enum QrSegmentMode {
|
|
Numeric,
|
|
Alphanumeric,
|
|
Byte,
|
|
Kanji,
|
|
Eci,
|
|
}
|
|
|
|
|
|
impl QrSegmentMode {
|
|
|
|
// Returns an unsigned 4-bit integer value (range 0 to 15)
|
|
// representing the mode indicator bits for this mode object.
|
|
fn mode_bits(&self) -> u32 {
|
|
use QrSegmentMode::*;
|
|
match *self {
|
|
Numeric => 0x1,
|
|
Alphanumeric => 0x2,
|
|
Byte => 0x4,
|
|
Kanji => 0x8,
|
|
Eci => 0x7,
|
|
}
|
|
}
|
|
|
|
|
|
// Returns the bit width of the character count field for a segment in this mode
|
|
// in a QR Code at the given version number. The result is in the range [0, 16].
|
|
fn num_char_count_bits(&self, ver: Version) -> u8 {
|
|
use QrSegmentMode::*;
|
|
(match *self {
|
|
Numeric => [10, 12, 14],
|
|
Alphanumeric => [ 9, 11, 13],
|
|
Byte => [ 8, 16, 16],
|
|
Kanji => [ 8, 10, 12],
|
|
Eci => [ 0, 0, 0],
|
|
})[((ver.value() + 7) / 17) as usize]
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*---- Bit buffer functionality ----*/
|
|
|
|
/// An appendable sequence of bits (0s and 1s).
|
|
///
|
|
/// Mainly used by QrSegment.
|
|
pub struct BitBuffer(pub Vec<bool>);
|
|
|
|
|
|
impl BitBuffer {
|
|
/// Appends the given number of low-order bits of the given value to this buffer.
|
|
///
|
|
/// Requires len ≤ 31 and val < 2<sup>len</sup>.
|
|
pub fn append_bits(&mut self, val: u32, len: u8) {
|
|
assert!(len <= 31 && (val >> len) == 0, "Value out of range");
|
|
self.0.extend((0 .. len as i32).rev().map(|i| get_bit(val, i))); // Append bit by bit
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/*---- Miscellaneous values ----*/
|
|
|
|
/// The error type when the supplied data does not fit any QR Code version.
|
|
///
|
|
/// Ways to handle this exception include:
|
|
///
|
|
/// - Decrease the error correction level if it was greater than `QrCodeEcc::Low`.
|
|
/// - If the `encode_segments_advanced()` function was called, then increase the maxversion
|
|
/// argument if it was less than `QrCode_MAX_VERSION`. (This advice does not apply to the
|
|
/// other factory functions because they search all versions up to `QrCode_MAX_VERSION`.)
|
|
/// - Split the text data into better or optimal segments in order to reduce the number of bits required.
|
|
/// - Change the text or binary data to be shorter.
|
|
/// - Change the text to fit the character set of a particular segment mode (e.g. alphanumeric).
|
|
/// - Propagate the error upward to the caller/user.
|
|
#[derive(Debug, Clone)]
|
|
pub struct DataTooLong(String);
|
|
|
|
impl std::error::Error for DataTooLong {
|
|
fn description(&self) -> &str {
|
|
&self.0
|
|
}
|
|
}
|
|
|
|
impl std::fmt::Display for DataTooLong {
|
|
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
|
|
f.write_str(&self.0)
|
|
}
|
|
}
|
|
|
|
|
|
/// A number between 1 and 40 (inclusive).
|
|
#[derive(Copy, Clone)]
|
|
pub struct Version(u8);
|
|
|
|
impl Version {
|
|
/// Creates a version object from the given number.
|
|
///
|
|
/// Panics if the number is outside the range [1, 40].
|
|
pub fn new(ver: u8) -> Self {
|
|
assert!(QrCode_MIN_VERSION.value() <= ver && ver <= QrCode_MAX_VERSION.value(), "Version number out of range");
|
|
Version(ver)
|
|
}
|
|
|
|
/// Returns the value, which is in the range [1, 40].
|
|
pub fn value(&self) -> u8 {
|
|
self.0
|
|
}
|
|
}
|
|
|
|
|
|
/// A number between 0 and 7 (inclusive).
|
|
#[derive(Copy, Clone)]
|
|
pub struct Mask(u8);
|
|
|
|
impl Mask {
|
|
/// Creates a mask object from the given number.
|
|
///
|
|
/// Panics if the number is outside the range [0, 7].
|
|
pub fn new(mask: u8) -> Self {
|
|
assert!(mask <= 7, "Mask value out of range");
|
|
Mask(mask)
|
|
}
|
|
|
|
/// Returns the value, which is in the range [0, 7].
|
|
pub fn value(&self) -> u8 {
|
|
self.0
|
|
}
|
|
}
|
|
|
|
|
|
// Returns true iff the i'th bit of x is set to 1.
|
|
fn get_bit(x: u32, i: i32) -> bool {
|
|
(x >> i) & 1 != 0
|
|
}
|