/* * QR Code generator library (JavaScript) * * Copyright (c) Project Nayuki. (MIT License) * https://www.nayuki.io/page/qr-code-generator-library * * Permission is hereby granted, free of charge, to any person obtaining a copy of * this software and associated documentation files (the "Software"), to deal in * the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of * the Software, and to permit persons to whom the Software is furnished to do so, * subject to the following conditions: * - The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * - The Software is provided "as is", without warranty of any kind, express or * implied, including but not limited to the warranties of merchantability, * fitness for a particular purpose and noninfringement. In no event shall the * authors or copyright holders be liable for any claim, damages or other * liability, whether in an action of contract, tort or otherwise, arising from, * out of or in connection with the Software or the use or other dealings in the * Software. */ "use strict"; /* * Module "qrcodegen", public members: * - Class QrCode: * - Function encodeText(str text, QrCode.Ecc ecl) -> QrCode * - Function encodeBinary(list data, QrCode.Ecc ecl) -> QrCode * - Function encodeSegments(list segs, QrCode.Ecc ecl, * int minVersion=1, int maxVersion=40, mask=-1, boostEcl=true) -> QrCode * - Constants int MIN_VERSION, MAX_VERSION * - Constructor QrCode(int version, QrCode.Ecc ecl, list dataCodewords, int mask) * - Fields int version, size, mask * - Field QrCode.Ecc errorCorrectionLevel * - Method getModule(int x, int y) -> bool * - Method drawCanvas(int scale, int border, HTMLCanvasElement canvas) -> void * - Method toSvgString(int border) -> str * - Enum Ecc: * - Constants LOW, MEDIUM, QUARTILE, HIGH * - Field int ordinal * - Class QrSegment: * - Function makeBytes(list data) -> QrSegment * - Function makeNumeric(str data) -> QrSegment * - Function makeAlphanumeric(str data) -> QrSegment * - Function makeSegments(str text) -> list * - Function makeEci(int assignVal) -> QrSegment * - Constructor QrSegment(QrSegment.Mode mode, int numChars, list bitData) * - Field QrSegment.Mode mode * - Field int numChars * - Method getBits() -> list * - Constants RegExp NUMERIC_REGEX, ALPHANUMERIC_REGEX * - Enum Mode: * - Constants NUMERIC, ALPHANUMERIC, BYTE, KANJI, ECI */ var qrcodegen = new function() { /*---- QR Code symbol class ----*/ /* * A class that represents an immutable square grid of black and white cells for a QR Code symbol, * and provides static functions to create a QR Code from user-supplied textual or binary data. * This class covers the QR Code Model 2 specification, supporting all versions (sizes) * from 1 to 40, all 4 error correction levels, and 4 character encoding modes. * This constructor creates a new QR Code symbol with the given version number, error correction level, binary data array, * and mask number. mask = -1 is for automatic choice, or 0 to 7 for fixed choice. This is a cumbersome low-level constructor * that should not be invoked directly by the user. To go one level up, see the QrCode.encodeSegments() function. */ this.QrCode = function(version, errCorLvl, dataCodewords, mask) { /*---- Constructor (low level) ----*/ // Check arguments and handle simple scalar fields if (mask < -1 || mask > 7) throw "Mask value out of range"; if (version < MIN_VERSION || version > MAX_VERSION) throw "Version value out of range"; var size = version * 4 + 17; // Initialize both grids to be size*size arrays of Boolean false var row = []; for (var i = 0; i < size; i++) row.push(false); var modules = []; var isFunction = []; for (var i = 0; i < size; i++) { modules .push(row.slice()); isFunction.push(row.slice()); } // Handle grid fields, draw function patterns, draw all codewords drawFunctionPatterns(); var allCodewords = addEccAndInterleave(dataCodewords); drawCodewords(allCodewords); // Do masking if (mask == -1) { // Automatically choose best mask var minPenalty = Infinity; for (var i = 0; i < 8; i++) { drawFormatBits(i); applyMask(i); var penalty = getPenaltyScore(); if (penalty < minPenalty) { mask = i; minPenalty = penalty; } applyMask(i); // Undoes the mask due to XOR } } if (mask < 0 || mask > 7) throw "Assertion error"; drawFormatBits(mask); // Overwrite old format bits applyMask(mask); // Apply the final choice of mask isFunction = null; /*---- Read-only instance properties ----*/ // This QR Code symbol's version number, which is always between 1 and 40 (inclusive). Object.defineProperty(this, "version", {value:version}); // The width and height of this QR Code symbol, measured in modules. // Always equal to version * 4 + 17, in the range 21 to 177. Object.defineProperty(this, "size", {value:size}); // The error correction level used in this QR Code symbol. Object.defineProperty(this, "errorCorrectionLevel", {value:errCorLvl}); // The mask pattern used in this QR Code symbol, in the range 0 to 7 (i.e. unsigned 3-bit integer). // Note that even if the constructor was called with automatic masking requested // (mask = -1), the resulting object will still have a mask value between 0 and 7. Object.defineProperty(this, "mask", {value:mask}); /*---- Accessor methods ----*/ // (Public) Returns the color of the module (pixel) at the given coordinates, which is either // false for white or true for black. The top left corner has the coordinates (x=0, y=0). // If the given coordinates are out of bounds, then false (white) is returned. this.getModule = function(x, y) { return 0 <= x && x < size && 0 <= y && y < size && modules[y][x]; }; /*---- Public instance methods ----*/ // Draws this QR Code symbol with the given module scale and number of modules onto the given HTML canvas element. // The canvas will be resized to a width and height of (this.size + border * 2) * scale. The painted image will be purely // black and white with no transparent regions. The scale must be a positive integer, and the border must be a non-negative integer. this.drawCanvas = function(scale, border, canvas) { if (scale <= 0 || border < 0) throw "Value out of range"; var width = (size + border * 2) * scale; canvas.width = width; canvas.height = width; var ctx = canvas.getContext("2d"); for (var y = -border; y < size + border; y++) { for (var x = -border; x < size + border; x++) { ctx.fillStyle = this.getModule(x, y) ? "#000000" : "#FFFFFF"; ctx.fillRect((x + border) * scale, (y + border) * scale, scale, scale); } } }; // Returns a string of SVG XML code representing an image of this QR Code symbol with the given // number of border modules. Note that Unix newlines (\n) are always used, regardless of the platform. this.toSvgString = function(border) { if (border < 0) throw "Border must be non-negative"; var parts = []; for (var y = 0; y < size; y++) { for (var x = 0; x < size; x++) { if (this.getModule(x, y)) parts.push("M" + (x + border) + "," + (y + border) + "h1v1h-1z"); } } return '\n' + '\n' + '\n' + '\t\n' + '\t\n' + '\n'; }; /*---- Private helper methods for constructor: Drawing function modules ----*/ // Reads this object's version field, and draws and marks all function modules. function drawFunctionPatterns() { // Draw horizontal and vertical timing patterns for (var i = 0; i < size; i++) { setFunctionModule(6, i, i % 2 == 0); setFunctionModule(i, 6, i % 2 == 0); } // Draw 3 finder patterns (all corners except bottom right; overwrites some timing modules) drawFinderPattern(3, 3); drawFinderPattern(size - 4, 3); drawFinderPattern(3, size - 4); // Draw numerous alignment patterns var alignPatPos = getAlignmentPatternPositions(); var numAlign = alignPatPos.length; for (var i = 0; i < numAlign; i++) { for (var j = 0; j < numAlign; j++) { // Don't draw on the three finder corners if (!(i == 0 && j == 0 || i == 0 && j == numAlign - 1 || i == numAlign - 1 && j == 0)) drawAlignmentPattern(alignPatPos[i], alignPatPos[j]); } } // Draw configuration data drawFormatBits(0); // Dummy mask value; overwritten later in the constructor drawVersion(); } // Draws two copies of the format bits (with its own error correction code) // based on the given mask and this object's error correction level field. function drawFormatBits(mask) { // Calculate error correction code and pack bits var data = errCorLvl.formatBits << 3 | mask; // errCorrLvl is uint2, mask is uint3 var rem = data; for (var i = 0; i < 10; i++) rem = (rem << 1) ^ ((rem >>> 9) * 0x537); var bits = (data << 10 | rem) ^ 0x5412; // uint15 if (bits >>> 15 != 0) throw "Assertion error"; // Draw first copy for (var i = 0; i <= 5; i++) setFunctionModule(8, i, getBit(bits, i)); setFunctionModule(8, 7, getBit(bits, 6)); setFunctionModule(8, 8, getBit(bits, 7)); setFunctionModule(7, 8, getBit(bits, 8)); for (var i = 9; i < 15; i++) setFunctionModule(14 - i, 8, getBit(bits, i)); // Draw second copy for (var i = 0; i <= 7; i++) setFunctionModule(size - 1 - i, 8, getBit(bits, i)); for (var i = 8; i < 15; i++) setFunctionModule(8, size - 15 + i, getBit(bits, i)); setFunctionModule(8, size - 8, true); // Always black } // Draws two copies of the version bits (with its own error correction code), // based on this object's version field, iff 7 <= version <= 40. function drawVersion() { if (version < 7) return; // Calculate error correction code and pack bits var rem = version; // version is uint6, in the range [7, 40] for (var i = 0; i < 12; i++) rem = (rem << 1) ^ ((rem >>> 11) * 0x1F25); var bits = version << 12 | rem; // uint18 if (bits >>> 18 != 0) throw "Assertion error"; // Draw two copies for (var i = 0; i < 18; i++) { var bit = getBit(bits, i); var a = size - 11 + i % 3; var b = Math.floor(i / 3); setFunctionModule(a, b, bit); setFunctionModule(b, a, bit); } } // Draws a 9*9 finder pattern including the border separator, // with the center module at (x, y). Modules can be out of bounds. function drawFinderPattern(x, y) { for (var dy = -4; dy <= 4; dy++) { for (var dx = -4; dx <= 4; dx++) { var dist = Math.max(Math.abs(dx), Math.abs(dy)); // Chebyshev/infinity norm var xx = x + dx, yy = y + dy; if (0 <= xx && xx < size && 0 <= yy && yy < size) setFunctionModule(xx, yy, dist != 2 && dist != 4); } } } // Draws a 5*5 alignment pattern, with the center module // at (x, y). All modules must be in bounds. function drawAlignmentPattern(x, y) { for (var dy = -2; dy <= 2; dy++) { for (var dx = -2; dx <= 2; dx++) setFunctionModule(x + dx, y + dy, Math.max(Math.abs(dx), Math.abs(dy)) != 1); } } // Sets the color of a module and marks it as a function module. // Only used by the constructor. Coordinates must be in bounds. function setFunctionModule(x, y, isBlack) { modules[y][x] = isBlack; isFunction[y][x] = true; } /*---- Private helper methods for constructor: Codewords and masking ----*/ // Returns a new byte string representing the given data with the appropriate error correction // codewords appended to it, based on this object's version and error correction level. function addEccAndInterleave(data) { if (data.length != QrCode.getNumDataCodewords(version, errCorLvl)) throw "Invalid argument"; // Calculate parameter numbers var numBlocks = QrCode.NUM_ERROR_CORRECTION_BLOCKS[errCorLvl.ordinal][version]; var blockEccLen = QrCode.ECC_CODEWORDS_PER_BLOCK [errCorLvl.ordinal][version]; var rawCodewords = Math.floor(QrCode.getNumRawDataModules(version) / 8); var numShortBlocks = numBlocks - rawCodewords % numBlocks; var shortBlockLen = Math.floor(rawCodewords / numBlocks); // Split data into blocks and append ECC to each block var blocks = []; var rs = new ReedSolomonGenerator(blockEccLen); for (var i = 0, k = 0; i < numBlocks; i++) { var dat = data.slice(k, k + shortBlockLen - blockEccLen + (i < numShortBlocks ? 0 : 1)); k += dat.length; var ecc = rs.getRemainder(dat); if (i < numShortBlocks) dat.push(0); blocks.push(dat.concat(ecc)); } // Interleave (not concatenate) the bytes from every block into a single sequence var result = []; for (var i = 0; i < blocks[0].length; i++) { for (var j = 0; j < blocks.length; j++) { // Skip the padding byte in short blocks if (i != shortBlockLen - blockEccLen || j >= numShortBlocks) result.push(blocks[j][i]); } } if (result.length != rawCodewords) throw "Assertion error"; return result; } // Draws the given sequence of 8-bit codewords (data and error correction) onto the entire // data area of this QR Code symbol. Function modules need to be marked off before this is called. function drawCodewords(data) { if (data.length != Math.floor(QrCode.getNumRawDataModules(version) / 8)) throw "Invalid argument"; var i = 0; // Bit index into the data // Do the funny zigzag scan for (var right = size - 1; right >= 1; right -= 2) { // Index of right column in each column pair if (right == 6) right = 5; for (var vert = 0; vert < size; vert++) { // Vertical counter for (var j = 0; j < 2; j++) { var x = right - j; // Actual x coordinate var upward = ((right + 1) & 2) == 0; var y = upward ? size - 1 - vert : vert; // Actual y coordinate if (!isFunction[y][x] && i < data.length * 8) { modules[y][x] = getBit(data[i >>> 3], 7 - (i & 7)); i++; } // If this QR Code has any remainder bits (0 to 7), they were assigned as // 0/false/white by the constructor and are left unchanged by this method } } } if (i != data.length * 8) throw "Assertion error"; } // XORs the codeword modules in this QR Code with the given mask pattern. // The function modules must be marked and the codeword bits must be drawn // before masking. Due to the arithmetic of XOR, calling applyMask() with // the same mask value a second time will undo the mask. A final well-formed // QR Code symbol needs exactly one (not zero, two, etc.) mask applied. function applyMask(mask) { if (mask < 0 || mask > 7) throw "Mask value out of range"; for (var y = 0; y < size; y++) { for (var x = 0; x < size; x++) { var invert; switch (mask) { case 0: invert = (x + y) % 2 == 0; break; case 1: invert = y % 2 == 0; break; case 2: invert = x % 3 == 0; break; case 3: invert = (x + y) % 3 == 0; break; case 4: invert = (Math.floor(x / 3) + Math.floor(y / 2)) % 2 == 0; break; case 5: invert = x * y % 2 + x * y % 3 == 0; break; case 6: invert = (x * y % 2 + x * y % 3) % 2 == 0; break; case 7: invert = ((x + y) % 2 + x * y % 3) % 2 == 0; break; default: throw "Assertion error"; } if (!isFunction[y][x] && invert) modules[y][x] = !modules[y][x]; } } } // Calculates and returns the penalty score based on state of this QR Code's current modules. // This is used by the automatic mask choice algorithm to find the mask pattern that yields the lowest score. function getPenaltyScore() { var result = 0; // Adjacent modules in row having same color for (var y = 0; y < size; y++) { for (var x = 0, runX, colorX; x < size; x++) { if (x == 0 || modules[y][x] != colorX) { colorX = modules[y][x]; runX = 1; } else { runX++; if (runX == 5) result += QrCode.PENALTY_N1; else if (runX > 5) result++; } } } // Adjacent modules in column having same color for (var x = 0; x < size; x++) { for (var y = 0, runY, colorY; y < size; y++) { if (y == 0 || modules[y][x] != colorY) { colorY = modules[y][x]; runY = 1; } else { runY++; if (runY == 5) result += QrCode.PENALTY_N1; else if (runY > 5) result++; } } } // 2*2 blocks of modules having same color for (var y = 0; y < size - 1; y++) { for (var x = 0; x < size - 1; x++) { var color = modules[y][x]; if ( color == modules[y][x + 1] && color == modules[y + 1][x] && color == modules[y + 1][x + 1]) result += QrCode.PENALTY_N2; } } // Finder-like pattern in rows for (var y = 0; y < size; y++) { for (var x = 0, bits = 0; x < size; x++) { bits = ((bits << 1) & 0x7FF) | (modules[y][x] ? 1 : 0); if (x >= 10 && (bits == 0x05D || bits == 0x5D0)) // Needs 11 bits accumulated result += QrCode.PENALTY_N3; } } // Finder-like pattern in columns for (var x = 0; x < size; x++) { for (var y = 0, bits = 0; y < size; y++) { bits = ((bits << 1) & 0x7FF) | (modules[y][x] ? 1 : 0); if (y >= 10 && (bits == 0x05D || bits == 0x5D0)) // Needs 11 bits accumulated result += QrCode.PENALTY_N3; } } // Balance of black and white modules var black = 0; modules.forEach(function(row) { row.forEach(function(color) { if (color) black++; }); }); var total = size * size; // Note that size is odd, so black/total != 1/2 // Compute the smallest integer k >= 0 such that (45-5k)% <= black/total <= (55+5k)% var k = Math.ceil(Math.abs(black * 20 - total * 10) / total) - 1; result += k * QrCode.PENALTY_N4; return result; } // Returns an ascending list of positions of alignment patterns for this version number. // Each position is in the range [0,177), and are used on both the x and y axes. // This could be implemented as lookup table of 40 variable-length lists of integers. function getAlignmentPatternPositions() { if (version == 1) return []; else { var numAlign = Math.floor(version / 7) + 2; var step = (version == 32) ? 26 : Math.ceil((size - 13) / (numAlign*2 - 2)) * 2; var result = [6]; for (var i = 0, pos = size - 7; i < numAlign - 1; i++, pos -= step) result.splice(1, 0, pos); return result; } } // Returns true iff the i'th bit of x is set to 1. function getBit(x, i) { return ((x >>> i) & 1) != 0; } }; /*---- Static factory functions (high level) for QrCode ----*/ /* * Returns a QR Code symbol representing the given Unicode text string at the given error correction level. * As a conservative upper bound, this function is guaranteed to succeed for strings that have 738 or fewer * Unicode code points (not UTF-16 code units) if the low error correction level is used. The smallest possible * QR Code version is automatically chosen for the output. The ECC level of the result may be higher than the * ecl argument if it can be done without increasing the version. */ this.QrCode.encodeText = function(text, ecl) { var segs = qrcodegen.QrSegment.makeSegments(text); return this.encodeSegments(segs, ecl); }; /* * Returns a QR Code symbol representing the given binary data string at the given error correction level. * This function always encodes using the binary segment mode, not any text mode. The maximum number of * bytes allowed is 2953. The smallest possible QR Code version is automatically chosen for the output. * The ECC level of the result may be higher than the ecl argument if it can be done without increasing the version. */ this.QrCode.encodeBinary = function(data, ecl) { var seg = qrcodegen.QrSegment.makeBytes(data); return this.encodeSegments([seg], ecl); }; /*---- Static factory functions (mid level) for QrCode ----*/ /* * Returns a QR Code symbol representing the given segments with the given encoding parameters. * The smallest possible QR Code version within the given range is automatically chosen for the output. * This function allows the user to create a custom sequence of segments that switches * between modes (such as alphanumeric and binary) to encode text more efficiently. * This function is considered to be lower level than simply encoding text or binary data. */ this.QrCode.encodeSegments = function(segs, ecl, minVersion, maxVersion, mask, boostEcl) { if (minVersion == undefined) minVersion = MIN_VERSION; if (maxVersion == undefined) maxVersion = MAX_VERSION; if (mask == undefined) mask = -1; if (boostEcl == undefined) boostEcl = true; if (!(MIN_VERSION <= minVersion && minVersion <= maxVersion && maxVersion <= MAX_VERSION) || mask < -1 || mask > 7) throw "Invalid value"; // Find the minimal version number to use var version, dataUsedBits; for (version = minVersion; ; version++) { var dataCapacityBits = QrCode.getNumDataCodewords(version, ecl) * 8; // Number of data bits available dataUsedBits = qrcodegen.QrSegment.getTotalBits(segs, version); if (dataUsedBits <= dataCapacityBits) break; // This version number is found to be suitable if (version >= maxVersion) // All versions in the range could not fit the given data throw "Data too long"; } // Increase the error correction level while the data still fits in the current version number [this.Ecc.MEDIUM, this.Ecc.QUARTILE, this.Ecc.HIGH].forEach(function(newEcl) { // From low to high if (boostEcl && dataUsedBits <= QrCode.getNumDataCodewords(version, newEcl) * 8) ecl = newEcl; }); // Concatenate all segments to create the data bit string var bb = new BitBuffer(); segs.forEach(function(seg) { bb.appendBits(seg.mode.modeBits, 4); bb.appendBits(seg.numChars, seg.mode.numCharCountBits(version)); seg.getBits().forEach(function(bit) { bb.push(bit); }); }); if (bb.length != dataUsedBits) throw "Assertion error"; // Add terminator and pad up to a byte if applicable var dataCapacityBits = QrCode.getNumDataCodewords(version, ecl) * 8; if (bb.length > dataCapacityBits) throw "Assertion error"; bb.appendBits(0, Math.min(4, dataCapacityBits - bb.length)); bb.appendBits(0, (8 - bb.length % 8) % 8); if (bb.length % 8 != 0) throw "Assertion error"; // Pad with alternating bytes until data capacity is reached for (var padByte = 0xEC; bb.length < dataCapacityBits; padByte ^= 0xEC ^ 0x11) bb.appendBits(padByte, 8); // Create the QR Code symbol return new this(version, ecl, bb.getBytes(), mask); }; /*---- Private static helper functions for QrCode ----*/ var QrCode = {}; // Private object to assign properties to. Not the same object as 'this.QrCode'. // Returns the number of data bits that can be stored in a QR Code of the given version number, after // all function modules are excluded. This includes remainder bits, so it might not be a multiple of 8. // The result is in the range [208, 29648]. This could be implemented as a 40-entry lookup table. QrCode.getNumRawDataModules = function(ver) { if (ver < MIN_VERSION || ver > MAX_VERSION) throw "Version number out of range"; var result = (16 * ver + 128) * ver + 64; if (ver >= 2) { var numAlign = Math.floor(ver / 7) + 2; result -= (25 * numAlign - 10) * numAlign - 55; if (ver >= 7) result -= 36; } return result; }; // Returns the number of 8-bit data (i.e. not error correction) codewords contained in any // QR Code of the given version number and error correction level, with remainder bits discarded. // This stateless pure function could be implemented as a (40*4)-cell lookup table. QrCode.getNumDataCodewords = function(ver, ecl) { return Math.floor(QrCode.getNumRawDataModules(ver) / 8) - QrCode.ECC_CODEWORDS_PER_BLOCK [ecl.ordinal][ver] * QrCode.NUM_ERROR_CORRECTION_BLOCKS[ecl.ordinal][ver]; }; /*---- Constants and tables for QrCode ----*/ var MIN_VERSION = 1; var MAX_VERSION = 40; Object.defineProperty(this.QrCode, "MIN_VERSION", {value:MIN_VERSION}); Object.defineProperty(this.QrCode, "MAX_VERSION", {value:MAX_VERSION}); // For use in getPenaltyScore(), when evaluating which mask is best. QrCode.PENALTY_N1 = 3; QrCode.PENALTY_N2 = 3; QrCode.PENALTY_N3 = 40; QrCode.PENALTY_N4 = 10; QrCode.ECC_CODEWORDS_PER_BLOCK = [ // Version: (note that index 0 is for padding, and is set to an illegal value) // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 Error correction level [null, 7, 10, 15, 20, 26, 18, 20, 24, 30, 18, 20, 24, 26, 30, 22, 24, 28, 30, 28, 28, 28, 28, 30, 30, 26, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30], // Low [null, 10, 16, 26, 18, 24, 16, 18, 22, 22, 26, 30, 22, 22, 24, 24, 28, 28, 26, 26, 26, 26, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28], // Medium [null, 13, 22, 18, 26, 18, 24, 18, 22, 20, 24, 28, 26, 24, 20, 30, 24, 28, 28, 26, 30, 28, 30, 30, 30, 30, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30], // Quartile [null, 17, 28, 22, 16, 22, 28, 26, 26, 24, 28, 24, 28, 22, 24, 24, 30, 28, 28, 26, 28, 30, 24, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30], // High ]; QrCode.NUM_ERROR_CORRECTION_BLOCKS = [ // Version: (note that index 0 is for padding, and is set to an illegal value) // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 Error correction level [null, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 4, 4, 4, 6, 6, 6, 6, 7, 8, 8, 9, 9, 10, 12, 12, 12, 13, 14, 15, 16, 17, 18, 19, 19, 20, 21, 22, 24, 25], // Low [null, 1, 1, 1, 2, 2, 4, 4, 4, 5, 5, 5, 8, 9, 9, 10, 10, 11, 13, 14, 16, 17, 17, 18, 20, 21, 23, 25, 26, 28, 29, 31, 33, 35, 37, 38, 40, 43, 45, 47, 49], // Medium [null, 1, 1, 2, 2, 4, 4, 6, 6, 8, 8, 8, 10, 12, 16, 12, 17, 16, 18, 21, 20, 23, 23, 25, 27, 29, 34, 34, 35, 38, 40, 43, 45, 48, 51, 53, 56, 59, 62, 65, 68], // Quartile [null, 1, 1, 2, 4, 4, 4, 5, 6, 8, 8, 11, 11, 16, 16, 18, 16, 19, 21, 25, 25, 25, 34, 30, 32, 35, 37, 40, 42, 45, 48, 51, 54, 57, 60, 63, 66, 70, 74, 77, 81], // High ]; /*---- Public helper enumeration ----*/ /* * Represents the error correction level used in a QR Code symbol. */ this.QrCode.Ecc = { // Constants declared in ascending order of error protection LOW : new Ecc(0, 1), MEDIUM : new Ecc(1, 0), QUARTILE: new Ecc(2, 3), HIGH : new Ecc(3, 2), }; // Private constructor. function Ecc(ord, fb) { // (Public) In the range 0 to 3 (unsigned 2-bit integer) Object.defineProperty(this, "ordinal", {value:ord}); // (Package-private) In the range 0 to 3 (unsigned 2-bit integer) Object.defineProperty(this, "formatBits", {value:fb}); } /*---- Data segment class ----*/ /* * Represents a segment of character data, binary data, or control data * to be put into a QR Code symbol. Instances of this class are immutable. * This segment class imposes no length restrictions, but QR Codes have restrictions. * Even in the most favorable conditions, a QR Code can only hold 7089 characters of data. * Any segment longer than this is meaningless for the purpose of generating QR Codes. * This constructor creates a QR Code segment with the given parameters and data. * The character count (numChars) must agree with the mode and the bit buffer length, * but the constraint isn't checked. The given bit buffer is cloned and stored. */ this.QrSegment = function(mode, numChars, bitData) { /*---- Constructor (low level) ----*/ if (numChars < 0 || !(mode instanceof Mode)) throw "Invalid argument"; bitData = bitData.slice(); // Make defensive copy // The mode indicator for this segment. Object.defineProperty(this, "mode", {value:mode}); // The length of this segment's unencoded data, measured in characters for // numeric/alphanumeric/kanji mode, bytes for byte mode, and 0 for ECI mode. // Always zero or positive. Object.defineProperty(this, "numChars", {value:numChars}); // Returns a copy of all bits, which is an array of 0s and 1s. this.getBits = function() { return bitData.slice(); // Make defensive copy }; }; /*---- Static factory functions (mid level) for QrSegment ----*/ /* * Returns a segment representing the given binary data encoded in byte mode. */ this.QrSegment.makeBytes = function(data) { var bb = new BitBuffer(); data.forEach(function(b) { bb.appendBits(b, 8); }); return new this(this.Mode.BYTE, data.length, bb); }; /* * Returns a segment representing the given string of decimal digits encoded in numeric mode. */ this.QrSegment.makeNumeric = function(digits) { if (!this.NUMERIC_REGEX.test(digits)) throw "String contains non-numeric characters"; var bb = new BitBuffer(); for (var i = 0; i < digits.length; ) { // Consume up to 3 digits per iteration var n = Math.min(digits.length - i, 3); bb.appendBits(parseInt(digits.substr(i, n), 10), n * 3 + 1); i += n; } return new this(this.Mode.NUMERIC, digits.length, bb); }; /* * Returns a segment representing the given text string encoded in alphanumeric mode. * The characters allowed are: 0 to 9, A to Z (uppercase only), space, * dollar, percent, asterisk, plus, hyphen, period, slash, colon. */ this.QrSegment.makeAlphanumeric = function(text) { if (!this.ALPHANUMERIC_REGEX.test(text)) throw "String contains unencodable characters in alphanumeric mode"; var bb = new BitBuffer(); var i; for (i = 0; i + 2 <= text.length; i += 2) { // Process groups of 2 var temp = QrSegment.ALPHANUMERIC_CHARSET.indexOf(text.charAt(i)) * 45; temp += QrSegment.ALPHANUMERIC_CHARSET.indexOf(text.charAt(i + 1)); bb.appendBits(temp, 11); } if (i < text.length) // 1 character remaining bb.appendBits(QrSegment.ALPHANUMERIC_CHARSET.indexOf(text.charAt(i)), 6); return new this(this.Mode.ALPHANUMERIC, text.length, bb); }; /* * Returns a new mutable list of zero or more segments to represent the given Unicode text string. * The result may use various segment modes and switch modes to optimize the length of the bit stream. */ this.QrSegment.makeSegments = function(text) { // Select the most efficient segment encoding automatically if (text == "") return []; else if (this.NUMERIC_REGEX.test(text)) return [this.makeNumeric(text)]; else if (this.ALPHANUMERIC_REGEX.test(text)) return [this.makeAlphanumeric(text)]; else return [this.makeBytes(toUtf8ByteArray(text))]; }; /* * Returns a segment representing an Extended Channel Interpretation * (ECI) designator with the given assignment value. */ this.QrSegment.makeEci = function(assignVal) { var bb = new BitBuffer(); if (assignVal < 0) throw "ECI assignment value out of range"; else if (assignVal < (1 << 7)) bb.appendBits(assignVal, 8); else if (assignVal < (1 << 14)) { bb.appendBits(2, 2); bb.appendBits(assignVal, 14); } else if (assignVal < 1000000) { bb.appendBits(6, 3); bb.appendBits(assignVal, 21); } else throw "ECI assignment value out of range"; return new this(this.Mode.ECI, 0, bb); }; // (Package-private) Calculates and returns the number of bits needed to encode the given segments at the // given version. The result is infinity if a segment has too many characters to fit its length field. this.QrSegment.getTotalBits = function(segs, version) { var result = 0; for (var i = 0; i < segs.length; i++) { var seg = segs[i]; var ccbits = seg.mode.numCharCountBits(version); if (seg.numChars >= (1 << ccbits)) return Infinity; // The segment's length doesn't fit the field's bit width result += 4 + ccbits + seg.getBits().length; } return result; }; /*---- Constants for QrSegment ----*/ var QrSegment = {}; // Private object to assign properties to. Not the same object as 'this.QrSegment'. // (Public) Can test whether a string is encodable in numeric mode (such as by using QrSegment.makeNumeric()). this.QrSegment.NUMERIC_REGEX = /^[0-9]*$/; // (Public) Can test whether a string is encodable in alphanumeric mode (such as by using QrSegment.makeAlphanumeric()). this.QrSegment.ALPHANUMERIC_REGEX = /^[A-Z0-9 $%*+.\/:-]*$/; // (Private) The set of all legal characters in alphanumeric mode, where each character value maps to the index in the string. QrSegment.ALPHANUMERIC_CHARSET = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ $%*+-./:"; /*---- Public helper enumeration ----*/ /* * Represents the mode field of a segment. Immutable. */ this.QrSegment.Mode = { // Constants NUMERIC : new Mode(0x1, [10, 12, 14]), ALPHANUMERIC: new Mode(0x2, [ 9, 11, 13]), BYTE : new Mode(0x4, [ 8, 16, 16]), KANJI : new Mode(0x8, [ 8, 10, 12]), ECI : new Mode(0x7, [ 0, 0, 0]), }; // Private constructor. function Mode(mode, ccbits) { // (Package-private) The mode indicator bits, which is a uint4 value (range 0 to 15). Object.defineProperty(this, "modeBits", {value:mode}); // (Package-private) Returns the bit width of the character count field for a segment in // this mode in a QR Code at the given version number. The result is in the range [0, 16]. this.numCharCountBits = function(ver) { return ccbits[Math.floor((ver + 7) / 17)]; }; } /*---- Private helper functions and classes ----*/ // Returns a new array of bytes representing the given string encoded in UTF-8. function toUtf8ByteArray(str) { str = encodeURI(str); var result = []; for (var i = 0; i < str.length; i++) { if (str.charAt(i) != "%") result.push(str.charCodeAt(i)); else { result.push(parseInt(str.substr(i + 1, 2), 16)); i += 2; } } return result; } /* * A private helper class that computes the Reed-Solomon error correction codewords for a sequence of * data codewords at a given degree. Objects are immutable, and the state only depends on the degree. * This class exists because each data block in a QR Code shares the same the divisor polynomial. * This constructor creates a Reed-Solomon ECC generator for the given degree. This could be implemented * as a lookup table over all possible parameter values, instead of as an algorithm. */ function ReedSolomonGenerator(degree) { if (degree < 1 || degree > 255) throw "Degree out of range"; // Coefficients of the divisor polynomial, stored from highest to lowest power, excluding the leading term which // is always 1. For example the polynomial x^3 + 255x^2 + 8x + 93 is stored as the uint8 array {255, 8, 93}. var coefficients = []; // Start with the monomial x^0 for (var i = 0; i < degree - 1; i++) coefficients.push(0); coefficients.push(1); // Compute the product polynomial (x - r^0) * (x - r^1) * (x - r^2) * ... * (x - r^{degree-1}), // drop the highest term, and store the rest of the coefficients in order of descending powers. // Note that r = 0x02, which is a generator element of this field GF(2^8/0x11D). var root = 1; for (var i = 0; i < degree; i++) { // Multiply the current product by (x - r^i) for (var j = 0; j < coefficients.length; j++) { coefficients[j] = ReedSolomonGenerator.multiply(coefficients[j], root); if (j + 1 < coefficients.length) coefficients[j] ^= coefficients[j + 1]; } root = ReedSolomonGenerator.multiply(root, 0x02); } // Computes and returns the Reed-Solomon error correction codewords for the given // sequence of data codewords. The returned object is always a new byte array. // This method does not alter this object's state (because it is immutable). this.getRemainder = function(data) { // Compute the remainder by performing polynomial division var result = coefficients.map(function() { return 0; }); data.forEach(function(b) { var factor = b ^ result.shift(); result.push(0); for (var i = 0; i < result.length; i++) result[i] ^= ReedSolomonGenerator.multiply(coefficients[i], factor); }); return result; }; } // This static function returns the product of the two given field elements modulo GF(2^8/0x11D). The arguments and // result are unsigned 8-bit integers. This could be implemented as a lookup table of 256*256 entries of uint8. ReedSolomonGenerator.multiply = function(x, y) { if (x >>> 8 != 0 || y >>> 8 != 0) throw "Byte out of range"; // Russian peasant multiplication var z = 0; for (var i = 7; i >= 0; i--) { z = (z << 1) ^ ((z >>> 7) * 0x11D); z ^= ((y >>> i) & 1) * x; } if (z >>> 8 != 0) throw "Assertion error"; return z; }; /* * A private helper class that represents an appendable sequence of bits (0s and 1s). * This constructor creates an empty bit buffer (length 0). */ function BitBuffer() { Array.call(this); // Packs this buffer's bits into bytes in big endian, // padding with '0' bit values, and returns the new array. this.getBytes = function() { var result = []; while (result.length * 8 < this.length) result.push(0); this.forEach(function(bit, i) { result[i >>> 3] |= bit << (7 - (i & 7)); }); return result; }; // Appends the given number of low bits of the given value to // this sequence. Requires 0 <= len <= 31 and 0 <= val < 2^len. this.appendBits = function(val, len) { if (len < 0 || len > 31 || val >>> len != 0) throw "Value out of range"; for (var i = len - 1; i >= 0; i--) // Append bit by bit this.push((val >>> i) & 1); }; } BitBuffer.prototype = Object.create(Array.prototype); BitBuffer.prototype.constructor = BitBuffer; };