/* * QR Code generator library (C) * * Copyright (c) Project Nayuki * https://www.nayuki.io/page/qr-code-generator-library * * (MIT License) * Permission is hereby granted, free of charge, to any person obtaining a copy of * this software and associated documentation files (the "Software"), to deal in * the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of * the Software, and to permit persons to whom the Software is furnished to do so, * subject to the following conditions: * - The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * - The Software is provided "as is", without warranty of any kind, express or * implied, including but not limited to the warranties of merchantability, * fitness for a particular purpose and noninfringement. In no event shall the * authors or copyright holders be liable for any claim, damages or other * liability, whether in an action of contract, tort or otherwise, arising from, * out of or in connection with the Software or the use or other dealings in the * Software. */ #include #include #include /*---- Forward declarations for private functions ----*/ static void calcReedSolomonGenerator(int degree, uint8_t result[]); static void calcReedSolomonRemainder(const uint8_t data[], int dataLen, const uint8_t generator[], int degree, uint8_t result[]); static uint8_t finiteFieldMultiply(uint8_t x, uint8_t y); /*---- Function implementations ----*/ // Calculates the Reed-Solomon generator polynomial of the given degree, storing in result[0 : degree]. static void calcReedSolomonGenerator(int degree, uint8_t result[]) { // Start with the monomial x^0 assert(1 <= degree && degree <= 30); memset(result, 0, degree * sizeof(result[0])); result[degree - 1] = 1; // Compute the product polynomial (x - r^0) * (x - r^1) * (x - r^2) * ... * (x - r^{degree-1}), // drop the highest term, and store the rest of the coefficients in order of descending powers. // Note that r = 0x02, which is a generator element of this field GF(2^8/0x11D). int root = 1; for (int i = 0; i < degree; i++) { // Multiply the current product by (x - r^i) for (int j = 0; j < degree; j++) { result[j] = finiteFieldMultiply(result[j], (uint8_t)root); if (j + 1 < degree) result[j] ^= result[j + 1]; } root = (root << 1) ^ ((root >> 7) * 0x11D); // Multiply by 0x02 mod GF(2^8/0x11D) } } // Calculates the remainder of the polynomial data[0 : dataLen] when divided by the generator[0 : degree], where all // polynomials are in big endian and the generator has an implicit leading 1 term, storing the result in result[0 : degree]. static void calcReedSolomonRemainder(const uint8_t data[], int dataLen, const uint8_t generator[], int degree, uint8_t result[]) { // Perform polynomial division assert(1 <= degree && degree <= 30); memset(result, 0, degree * sizeof(result[0])); for (int i = 0; i < dataLen; i++) { uint8_t factor = data[i] ^ result[0]; memmove(&result[0], &result[1], (degree - 1) * sizeof(result[0])); result[degree - 1] = 0; for (int j = 0; j < degree; j++) result[j] ^= finiteFieldMultiply(generator[j], factor); } } // Returns the product of the two given field elements modulo GF(2^8/0x11D). All argument values are valid. static uint8_t finiteFieldMultiply(uint8_t x, uint8_t y) { // Russian peasant multiplication uint8_t z = 0; for (int i = 7; i >= 0; i--) { z = (z << 1) ^ ((z >> 7) * 0x11D); z ^= ((y >> i) & 1) * x; } return z; }