/* * QR Code generator library (Rust) * * Copyright (c) Project Nayuki. (MIT License) * https://www.nayuki.io/page/qr-code-generator-library * * Permission is hereby granted, free of charge, to any person obtaining a copy of * this software and associated documentation files (the "Software"), to deal in * the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of * the Software, and to permit persons to whom the Software is furnished to do so, * subject to the following conditions: * - The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * - The Software is provided "as is", without warranty of any kind, express or * implied, including but not limited to the warranties of merchantability, * fitness for a particular purpose and noninfringement. In no event shall the * authors or copyright holders be liable for any claim, damages or other * liability, whether in an action of contract, tort or otherwise, arising from, * out of or in connection with the Software or the use or other dealings in the * Software. */ /*---- QrCode functionality ----*/ // Represents an immutable square grid of black and white cells for a QR Code symbol, and // provides static functions to create a QR Code from user-supplied textual or binary data. // This struct and impl cover the QR Code Model 2 specification, supporting all versions // (sizes) from 1 to 40, all 4 error correction levels, and 4 character encoding modes. #[derive(Clone)] pub struct QrCode { // This QR Code symbol's version number, which is always between 1 and 40 (inclusive). version: Version, // The width and height of this QR Code symbol, measured in modules. // Always equal to version × 4 + 17, in the range 21 to 177. size: i32, // The error correction level used in this QR Code symbol. errorcorrectionlevel: QrCodeEcc, // The mask pattern used in this QR Code symbol, in the range 0 to 7 (i.e. unsigned 3-bit integer). // Note that even if a constructor was called with automatic masking requested // (mask = -1), the resulting object will still have a mask value between 0 and 7. mask: Mask, // The modules of this QR Code symbol (false = white, true = black) modules: Vec<bool>, // Indicates function modules that are not subjected to masking isfunction: Vec<bool>, } impl QrCode { /*---- Public static factory functions ----*/ // Returns a QR Code symbol representing the given Unicode text string at the given error correction level. // As a conservative upper bound, this function is guaranteed to succeed for strings that have 738 or fewer Unicode // code points (not UTF-8 code units) if the low error correction level is used. The smallest possible // QR Code version is automatically chosen for the output. The ECC level of the result may be higher than // the ecl argument if it can be done without increasing the version. Returns a wrapped QrCode if successful, // or None if the data is too long to fit in any version at the given ECC level. pub fn encode_text(text: &str, ecl: QrCodeEcc) -> Option<Self> { let chrs: Vec<char> = text.chars().collect(); let segs: Vec<QrSegment> = QrSegment::make_segments(&chrs); QrCode::encode_segments(&segs, ecl) } // Returns a QR Code symbol representing the given binary data string at the given error correction level. // This function always encodes using the binary segment mode, not any text mode. The maximum number of // bytes allowed is 2953. The smallest possible QR Code version is automatically chosen for the output. // The ECC level of the result may be higher than the ecl argument if it can be done without increasing the version. // Returns a wrapped QrCode if successful, or None if the data is too long to fit in any version at the given ECC level. pub fn encode_binary(data: &[u8], ecl: QrCodeEcc) -> Option<Self> { let segs: Vec<QrSegment> = vec![QrSegment::make_bytes(data)]; QrCode::encode_segments(&segs, ecl) } // Returns a QR Code symbol representing the given segments at the given error correction level. // The smallest possible QR Code version is automatically chosen for the output. The ECC level // of the result may be higher than the ecl argument if it can be done without increasing the version. // This function allows the user to create a custom sequence of segments that switches // between modes (such as alphanumeric and binary) to encode text more efficiently. // This function is considered to be lower level than simply encoding text or binary data. // Returns a wrapped QrCode if successful, or None if the data is too long to fit in any version at the given ECC level. pub fn encode_segments(segs: &[QrSegment], ecl: QrCodeEcc) -> Option<Self> { QrCode::encode_segments_advanced(segs, ecl, QrCode_MIN_VERSION, QrCode_MAX_VERSION, None, true) } // Returns a QR Code symbol representing the given segments with the given encoding parameters. // The smallest possible QR Code version within the given range is automatically chosen for the output. // This function allows the user to create a custom sequence of segments that switches // between modes (such as alphanumeric and binary) to encode text more efficiently. // This function is considered to be lower level than simply encoding text or binary data. // Returns a wrapped QrCode if successful, or None if the data is too long to fit // in any version in the given range at the given ECC level. pub fn encode_segments_advanced(segs: &[QrSegment], mut ecl: QrCodeEcc, minversion: Version, maxversion: Version, mask: Option<Mask>, boostecl: bool) -> Option<Self> { assert!(minversion.value() <= maxversion.value(), "Invalid value"); // Find the minimal version number to use let mut version = minversion; let datausedbits: usize; loop { // Number of data bits available let datacapacitybits: usize = QrCode::get_num_data_codewords(version, ecl) * 8; if let Some(n) = QrSegment::get_total_bits(segs, version) { if n <= datacapacitybits { datausedbits = n; break; // This version number is found to be suitable } } if version.value() >= maxversion.value() { // All versions in the range could not fit the given data return None; } version = Version::new(version.value() + 1); } // Increase the error correction level while the data still fits in the current version number for newecl in &[QrCodeEcc::Medium, QrCodeEcc::Quartile, QrCodeEcc::High] { // From low to high if boostecl && datausedbits <= QrCode::get_num_data_codewords(version, *newecl) * 8 { ecl = *newecl; } } // Concatenate all segments to create the data bit string let mut bb = BitBuffer(Vec::new()); for seg in segs { bb.append_bits(seg.mode.mode_bits(), 4); bb.append_bits(seg.numchars as u32, seg.mode.num_char_count_bits(version)); bb.0.extend_from_slice(&seg.data); } assert_eq!(bb.0.len(), datausedbits); // Add terminator and pad up to a byte if applicable let datacapacitybits: usize = QrCode::get_num_data_codewords(version, ecl) * 8; assert!(bb.0.len() <= datacapacitybits); let numzerobits = std::cmp::min(4, datacapacitybits - bb.0.len()); bb.append_bits(0, numzerobits as u8); let numzerobits = bb.0.len().wrapping_neg() & 7; bb.append_bits(0, numzerobits as u8); assert_eq!(bb.0.len() % 8, 0, "Assertion error"); // Pad with alternating bytes until data capacity is reached for padbyte in [0xEC, 0x11].iter().cycle() { if bb.0.len() >= datacapacitybits { break; } bb.append_bits(*padbyte, 8); } let mut bytes = vec![0u8; bb.0.len() / 8]; for (i, bit) in bb.0.iter().enumerate() { bytes[i >> 3] |= (*bit as u8) << (7 - (i & 7)); } // Create the QR Code symbol Some(QrCode::encode_codewords(version, ecl, &bytes, mask)) } /*---- Constructor ----*/ // Creates a new QR Code symbol with the given version number, error correction level, // binary data array, and mask number. This is a cumbersome low-level constructor that // should not be invoked directly by the user. To go one level up, see the encode_segments() function. pub fn encode_codewords(ver: Version, ecl: QrCodeEcc, datacodewords: &[u8], mask: Option<Mask>) -> Self { // Initialize fields let size: usize = (ver.value() as usize) * 4 + 17; let mut result = Self { version: ver, size: size as i32, mask: Mask::new(0), // Dummy value errorcorrectionlevel: ecl, modules: vec![false; size * size], // Entirely white grid isfunction: vec![false; size * size], }; // Draw function patterns, draw all codewords, do masking result.draw_function_patterns(); let allcodewords: Vec<u8> = result.add_ecc_and_interleave(datacodewords); result.draw_codewords(&allcodewords); result.handle_constructor_masking(mask); result.isfunction.clear(); result.isfunction.shrink_to_fit(); result } /*---- Public methods ----*/ // Returns this QR Code's version, in the range [1, 40]. pub fn version(&self) -> Version { self.version } // Returns this QR Code's size, in the range [21, 177]. pub fn size(&self) -> i32 { self.size } // Returns this QR Code's error correction level. pub fn error_correction_level(&self) -> QrCodeEcc { self.errorcorrectionlevel } // Returns this QR Code's mask, in the range [0, 7]. pub fn mask(&self) -> Mask { self.mask } // Returns the color of the module (pixel) at the given coordinates, which is either // false for white or true for black. The top left corner has the coordinates (x=0, y=0). // If the given coordinates are out of bounds, then 0 (white) is returned. pub fn get_module(&self, x: i32, y: i32) -> bool { 0 <= x && x < self.size && 0 <= y && y < self.size && self.module(x, y) } // Returns the color of the module at the given coordinates, which must be in bounds. fn module(&self, x: i32, y: i32) -> bool { self.modules[(y * self.size + x) as usize] } // Returns a mutable reference to the module's color at the given coordinates, which must be in bounds. fn module_mut(&mut self, x: i32, y: i32) -> &mut bool { &mut self.modules[(y * self.size + x) as usize] } // Returns a string of SVG XML code representing an image of this QR Code symbol with the given // number of border modules. Note that Unix newlines (\n) are always used, regardless of the platform. pub fn to_svg_string(&self, border: i32) -> String { assert!(border >= 0, "Border must be non-negative"); let mut result = String::new(); result += "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n"; result += "<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\" \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n"; let dimension = self.size.checked_add(border.checked_mul(2).unwrap()).unwrap(); result += &format!( "<svg xmlns=\"http://www.w3.org/2000/svg\" version=\"1.1\" viewBox=\"0 0 {0} {0}\" stroke=\"none\">\n", dimension); result += "\t<rect width=\"100%\" height=\"100%\" fill=\"#FFFFFF\"/>\n"; result += "\t<path d=\""; for y in 0 .. self.size { for x in 0 .. self.size { if self.get_module(x, y) { if x != 0 || y != 0 { result += " "; } result += &format!("M{},{}h1v1h-1z", x + border, y + border); } } } result += "\" fill=\"#000000\"/>\n"; result += "</svg>\n"; result } /*---- Private helper methods for constructor: Drawing function modules ----*/ // Reads this object's version field, and draws and marks all function modules. fn draw_function_patterns(&mut self) { // Draw horizontal and vertical timing patterns let size: i32 = self.size; for i in 0 .. size { self.set_function_module(6, i, i % 2 == 0); self.set_function_module(i, 6, i % 2 == 0); } // Draw 3 finder patterns (all corners except bottom right; overwrites some timing modules) self.draw_finder_pattern(3, 3); self.draw_finder_pattern(size - 4, 3); self.draw_finder_pattern(3, size - 4); // Draw numerous alignment patterns let alignpatpos: Vec<i32> = self.get_alignment_pattern_positions(); let numalign: usize = alignpatpos.len(); for i in 0 .. numalign { for j in 0 .. numalign { // Don't draw on the three finder corners if !(i == 0 && j == 0 || i == 0 && j == numalign - 1 || i == numalign - 1 && j == 0) { self.draw_alignment_pattern(alignpatpos[i], alignpatpos[j]); } } } // Draw configuration data self.draw_format_bits(Mask::new(0)); // Dummy mask value; overwritten later in the constructor self.draw_version(); } // Draws two copies of the format bits (with its own error correction code) // based on the given mask and this object's error correction level field. fn draw_format_bits(&mut self, mask: Mask) { // Calculate error correction code and pack bits let size: i32 = self.size; // errcorrlvl is uint2, mask is uint3 let data: u32 = self.errorcorrectionlevel.format_bits() << 3 | (mask.value() as u32); let mut rem: u32 = data; for _ in 0 .. 10 { rem = (rem << 1) ^ ((rem >> 9) * 0x537); } let bits: u32 = (data << 10 | rem) ^ 0x5412; // uint15 assert_eq!(bits >> 15, 0, "Assertion error"); // Draw first copy for i in 0 .. 6 { self.set_function_module(8, i, get_bit(bits, i)); } self.set_function_module(8, 7, get_bit(bits, 6)); self.set_function_module(8, 8, get_bit(bits, 7)); self.set_function_module(7, 8, get_bit(bits, 8)); for i in 9 .. 15 { self.set_function_module(14 - i, 8, get_bit(bits, i)); } // Draw second copy for i in 0 .. 8 { self.set_function_module(size - 1 - i, 8, get_bit(bits, i)); } for i in 8 .. 15 { self.set_function_module(8, size - 15 + i, get_bit(bits, i)); } self.set_function_module(8, size - 8, true); // Always black } // Draws two copies of the version bits (with its own error correction code), // based on this object's version field, iff 7 <= version <= 40. fn draw_version(&mut self) { if self.version.value() < 7 { return; } // Calculate error correction code and pack bits let mut rem: u32 = self.version.value() as u32; // version is uint6, in the range [7, 40] for _ in 0 .. 12 { rem = (rem << 1) ^ ((rem >> 11) * 0x1F25); } let bits: u32 = (self.version.value() as u32) << 12 | rem; // uint18 assert!(bits >> 18 == 0, "Assertion error"); // Draw two copies for i in 0 .. 18 { let bit: bool = get_bit(bits, i); let a: i32 = self.size - 11 + i % 3; let b: i32 = i / 3; self.set_function_module(a, b, bit); self.set_function_module(b, a, bit); } } // Draws a 9*9 finder pattern including the border separator, // with the center module at (x, y). Modules can be out of bounds. fn draw_finder_pattern(&mut self, x: i32, y: i32) { for dy in -4 .. 5 { for dx in -4 .. 5 { let xx: i32 = x + dx; let yy: i32 = y + dy; if 0 <= xx && xx < self.size && 0 <= yy && yy < self.size { let dist: i32 = std::cmp::max(dx.abs(), dy.abs()); // Chebyshev/infinity norm self.set_function_module(xx, yy, dist != 2 && dist != 4); } } } } // Draws a 5*5 alignment pattern, with the center module // at (x, y). All modules must be in bounds. fn draw_alignment_pattern(&mut self, x: i32, y: i32) { for dy in -2 .. 3 { for dx in -2 .. 3 { self.set_function_module(x + dx, y + dy, std::cmp::max(dx.abs(), dy.abs()) != 1); } } } // Sets the color of a module and marks it as a function module. // Only used by the constructor. Coordinates must be in bounds. fn set_function_module(&mut self, x: i32, y: i32, isblack: bool) { *self.module_mut(x, y) = isblack; self.isfunction[(y * self.size + x) as usize] = true; } /*---- Private helper methods for constructor: Codewords and masking ----*/ // Returns a new byte string representing the given data with the appropriate error correction // codewords appended to it, based on this object's version and error correction level. fn add_ecc_and_interleave(&self, data: &[u8]) -> Vec<u8> { let ver = self.version; let ecl = self.errorcorrectionlevel; assert_eq!(data.len(), QrCode::get_num_data_codewords(ver, ecl), "Illegal argument"); // Calculate parameter numbers let numblocks: usize = QrCode::table_get(&NUM_ERROR_CORRECTION_BLOCKS, ver, ecl); let blockecclen: usize = QrCode::table_get(&ECC_CODEWORDS_PER_BLOCK , ver, ecl); let rawcodewords: usize = QrCode::get_num_raw_data_modules(ver) / 8; let numshortblocks: usize = numblocks - rawcodewords % numblocks; let shortblocklen: usize = rawcodewords / numblocks; // Split data into blocks and append ECC to each block let mut blocks = Vec::<Vec<u8>>::with_capacity(numblocks); let rs = ReedSolomonGenerator::new(blockecclen); let mut k: usize = 0; for i in 0 .. numblocks { let mut dat = data[k .. k + shortblocklen - blockecclen + ((i >= numshortblocks) as usize)].to_vec(); k += dat.len(); let ecc: Vec<u8> = rs.get_remainder(&dat); if i < numshortblocks { dat.push(0); } dat.extend_from_slice(&ecc); blocks.push(dat); } // Interleave (not concatenate) the bytes from every block into a single sequence let mut result = Vec::<u8>::with_capacity(rawcodewords); for i in 0 .. shortblocklen + 1 { for j in 0 .. numblocks { // Skip the padding byte in short blocks if i != shortblocklen - blockecclen || j >= numshortblocks { result.push(blocks[j][i]); } } } result } // Draws the given sequence of 8-bit codewords (data and error correction) onto the entire // data area of this QR Code symbol. Function modules need to be marked off before this is called. fn draw_codewords(&mut self, data: &[u8]) { assert_eq!(data.len(), QrCode::get_num_raw_data_modules(self.version) / 8, "Illegal argument"); let mut i: usize = 0; // Bit index into the data // Do the funny zigzag scan let mut right: i32 = self.size - 1; while right >= 1 { // Index of right column in each column pair if right == 6 { right = 5; } for vert in 0 .. self.size { // Vertical counter for j in 0 .. 2 { let x: i32 = right - j; // Actual x coordinate let upward: bool = (right + 1) & 2 == 0; let y: i32 = if upward { self.size - 1 - vert } else { vert }; // Actual y coordinate if !self.isfunction[(y * self.size + x) as usize] && i < data.len() * 8 { *self.module_mut(x, y) = get_bit(data[i >> 3] as u32, 7 - ((i & 7) as i32)); i += 1; } // If this QR Code has any remainder bits (0 to 7), they were assigned as // 0/false/white by the constructor and are left unchanged by this method } } right -= 2; } assert_eq!(i, data.len() * 8, "Assertion error"); } // XORs the codeword modules in this QR Code with the given mask pattern. // The function modules must be marked and the codeword bits must be drawn // before masking. Due to the arithmetic of XOR, calling applyMask() with // the same mask value a second time will undo the mask. A final well-formed // QR Code symbol needs exactly one (not zero, two, etc.) mask applied. fn apply_mask(&mut self, mask: Mask) { let mask: u8 = mask.value(); for y in 0 .. self.size { for x in 0 .. self.size { let invert: bool = match mask { 0 => (x + y) % 2 == 0, 1 => y % 2 == 0, 2 => x % 3 == 0, 3 => (x + y) % 3 == 0, 4 => (x / 3 + y / 2) % 2 == 0, 5 => x * y % 2 + x * y % 3 == 0, 6 => (x * y % 2 + x * y % 3) % 2 == 0, 7 => ((x + y) % 2 + x * y % 3) % 2 == 0, _ => unreachable!(), }; *self.module_mut(x, y) ^= invert & !self.isfunction[(y * self.size + x) as usize]; } } } // A messy helper function for the constructors. This QR Code must be in an unmasked state when this // method is called. The given argument is the requested mask, which is -1 for auto or 0 to 7 for fixed. // This method applies and returns the actual mask chosen, from 0 to 7. fn handle_constructor_masking(&mut self, mut mask: Option<Mask>) { if mask.is_none() { // Automatically choose best mask let mut minpenalty: i32 = std::i32::MAX; for i in 0u8 .. 8 { let newmask = Mask::new(i); self.draw_format_bits(newmask); self.apply_mask(newmask); let penalty: i32 = self.get_penalty_score(); if penalty < minpenalty { mask = Some(newmask); minpenalty = penalty; } self.apply_mask(newmask); // Undoes the mask due to XOR } } let msk: Mask = mask.unwrap(); self.draw_format_bits(msk); // Overwrite old format bits self.apply_mask(msk); // Apply the final choice of mask self.mask = msk; } // Calculates and returns the penalty score based on state of this QR Code's current modules. // This is used by the automatic mask choice algorithm to find the mask pattern that yields the lowest score. fn get_penalty_score(&self) -> i32 { let mut result: i32 = 0; let size: i32 = self.size; // Adjacent modules in row having same color for y in 0 .. size { let mut colorx = false; let mut runx: i32 = 0; for x in 0 .. size { if x == 0 || self.module(x, y) != colorx { colorx = self.module(x, y); runx = 1; } else { runx += 1; if runx == 5 { result += PENALTY_N1; } else if runx > 5 { result += 1; } } } } // Adjacent modules in column having same color for x in 0 .. size { let mut colory = false; let mut runy: i32 = 0; for y in 0 .. size { if y == 0 || self.module(x, y) != colory { colory = self.module(x, y); runy = 1; } else { runy += 1; if runy == 5 { result += PENALTY_N1; } else if runy > 5 { result += 1; } } } } // 2*2 blocks of modules having same color for y in 0 .. size - 1 { for x in 0 .. size - 1 { let color: bool = self.module(x, y); if color == self.module(x + 1, y) && color == self.module(x, y + 1) && color == self.module(x + 1, y + 1) { result += PENALTY_N2; } } } // Finder-like pattern in rows for y in 0 .. size { let mut bits: u32 = 0; for x in 0 .. size { bits = ((bits << 1) & 0x7FF) | (self.module(x, y) as u32); if x >= 10 && (bits == 0x05D || bits == 0x5D0) { // Needs 11 bits accumulated result += PENALTY_N3; } } } // Finder-like pattern in columns for x in 0 .. size { let mut bits: u32 = 0; for y in 0 .. size { bits = ((bits << 1) & 0x7FF) | (self.module(x, y) as u32); if y >= 10 && (bits == 0x05D || bits == 0x5D0) { // Needs 11 bits accumulated result += PENALTY_N3; } } } // Balance of black and white modules let mut black: i32 = 0; for color in &self.modules { black += *color as i32; } let total: i32 = size * size; // Note that size is odd, so black/total != 1/2 // Compute the smallest integer k >= 0 such that (45-5k)% <= black/total <= (55+5k)% let k: i32 = ((black * 20 - total * 10).abs() + total - 1) / total - 1; result += k * PENALTY_N4; result } /*---- Private static helper functions ----*/ // Returns an ascending list of positions of alignment patterns for this version number. // Each position is in the range [0,177), and are used on both the x and y axes. // This could be implemented as lookup table of 40 variable-length lists of unsigned bytes. fn get_alignment_pattern_positions(&self) -> Vec<i32> { let ver = self.version.value(); if ver == 1 { vec![] } else { let numalign: i32 = (ver as i32) / 7 + 2; let step: i32 = if ver == 32 { 26 } else {((ver as i32)*4 + numalign*2 + 1) / (numalign*2 - 2) * 2}; let mut result: Vec<i32> = (0 .. numalign - 1).map( |i| self.size - 7 - i * step).collect(); result.push(6); result.reverse(); result } } // Returns the number of data bits that can be stored in a QR Code of the given version number, after // all function modules are excluded. This includes remainder bits, so it might not be a multiple of 8. // The result is in the range [208, 29648]. This could be implemented as a 40-entry lookup table. fn get_num_raw_data_modules(ver: Version) -> usize { let ver = ver.value() as usize; let mut result: usize = (16 * ver + 128) * ver + 64; if ver >= 2 { let numalign: usize = ver / 7 + 2; result -= (25 * numalign - 10) * numalign - 55; if ver >= 7 { result -= 36; } } result } // Returns the number of 8-bit data (i.e. not error correction) codewords contained in any // QR Code of the given version number and error correction level, with remainder bits discarded. // This stateless pure function could be implemented as a (40*4)-cell lookup table. fn get_num_data_codewords(ver: Version, ecl: QrCodeEcc) -> usize { QrCode::get_num_raw_data_modules(ver) / 8 - QrCode::table_get(&ECC_CODEWORDS_PER_BLOCK , ver, ecl) * QrCode::table_get(&NUM_ERROR_CORRECTION_BLOCKS, ver, ecl) } // Returns an entry from the given table based on the given values. fn table_get(table: &'static [[i8; 41]; 4], ver: Version, ecl: QrCodeEcc) -> usize { table[ecl.ordinal()][ver.value() as usize] as usize } } /*---- Cconstants and tables ----*/ pub const QrCode_MIN_VERSION: Version = Version( 1); pub const QrCode_MAX_VERSION: Version = Version(40); // For use in get_penalty_score(), when evaluating which mask is best. const PENALTY_N1: i32 = 3; const PENALTY_N2: i32 = 3; const PENALTY_N3: i32 = 40; const PENALTY_N4: i32 = 10; static ECC_CODEWORDS_PER_BLOCK: [[i8; 41]; 4] = [ // Version: (note that index 0 is for padding, and is set to an illegal value) //0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 Error correction level [-1, 7, 10, 15, 20, 26, 18, 20, 24, 30, 18, 20, 24, 26, 30, 22, 24, 28, 30, 28, 28, 28, 28, 30, 30, 26, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30], // Low [-1, 10, 16, 26, 18, 24, 16, 18, 22, 22, 26, 30, 22, 22, 24, 24, 28, 28, 26, 26, 26, 26, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28], // Medium [-1, 13, 22, 18, 26, 18, 24, 18, 22, 20, 24, 28, 26, 24, 20, 30, 24, 28, 28, 26, 30, 28, 30, 30, 30, 30, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30], // Quartile [-1, 17, 28, 22, 16, 22, 28, 26, 26, 24, 28, 24, 28, 22, 24, 24, 30, 28, 28, 26, 28, 30, 24, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30], // High ]; static NUM_ERROR_CORRECTION_BLOCKS: [[i8; 41]; 4] = [ // Version: (note that index 0 is for padding, and is set to an illegal value) //0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 Error correction level [-1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 4, 4, 4, 6, 6, 6, 6, 7, 8, 8, 9, 9, 10, 12, 12, 12, 13, 14, 15, 16, 17, 18, 19, 19, 20, 21, 22, 24, 25], // Low [-1, 1, 1, 1, 2, 2, 4, 4, 4, 5, 5, 5, 8, 9, 9, 10, 10, 11, 13, 14, 16, 17, 17, 18, 20, 21, 23, 25, 26, 28, 29, 31, 33, 35, 37, 38, 40, 43, 45, 47, 49], // Medium [-1, 1, 1, 2, 2, 4, 4, 6, 6, 8, 8, 8, 10, 12, 16, 12, 17, 16, 18, 21, 20, 23, 23, 25, 27, 29, 34, 34, 35, 38, 40, 43, 45, 48, 51, 53, 56, 59, 62, 65, 68], // Quartile [-1, 1, 1, 2, 4, 4, 4, 5, 6, 8, 8, 11, 11, 16, 16, 18, 16, 19, 21, 25, 25, 25, 34, 30, 32, 35, 37, 40, 42, 45, 48, 51, 54, 57, 60, 63, 66, 70, 74, 77, 81], // High ]; /*---- QrCodeEcc functionality ----*/ // Represents the error correction level used in a QR Code symbol. Immutable. #[derive(Clone, Copy)] pub enum QrCodeEcc { Low, Medium, Quartile, High, } impl QrCodeEcc { // Returns an unsigned 2-bit integer (in the range 0 to 3). fn ordinal(&self) -> usize { use QrCodeEcc::*; match *self { Low => 0, Medium => 1, Quartile => 2, High => 3, } } // Returns an unsigned 2-bit integer (in the range 0 to 3). fn format_bits(&self) -> u32 { use QrCodeEcc::*; match *self { Low => 1, Medium => 0, Quartile => 3, High => 2, } } } /*---- ReedSolomonGenerator functionality ----*/ // Computes the Reed-Solomon error correction codewords for a sequence of data codewords // at a given degree. Objects are immutable, and the state only depends on the degree. // This class exists because each data block in a QR Code shares the same the divisor polynomial. struct ReedSolomonGenerator { // Coefficients of the divisor polynomial, stored from highest to lowest power, excluding the leading term which // is always 1. For example the polynomial x^3 + 255x^2 + 8x + 93 is stored as the uint8 array {255, 8, 93}. coefficients: Vec<u8>, } impl ReedSolomonGenerator { // Creates a Reed-Solomon ECC generator for the given degree. This could be implemented // as a lookup table over all possible parameter values, instead of as an algorithm. fn new(degree: usize) -> Self { assert!(1 <= degree && degree <= 255, "Degree out of range"); // Start with the monomial x^0 let mut coefs = vec![0u8; degree - 1]; coefs.push(1); // Compute the product polynomial (x - r^0) * (x - r^1) * (x - r^2) * ... * (x - r^{degree-1}), // drop the highest term, and store the rest of the coefficients in order of descending powers. // Note that r = 0x02, which is a generator element of this field GF(2^8/0x11D). let mut root: u8 = 1; for _ in 0 .. degree { // Unused variable i // Multiply the current product by (x - r^i) for j in 0 .. degree { coefs[j] = ReedSolomonGenerator::multiply(coefs[j], root); if j + 1 < coefs.len() { coefs[j] ^= coefs[j + 1]; } } root = ReedSolomonGenerator::multiply(root, 0x02); } Self { coefficients: coefs } } // Computes and returns the Reed-Solomon error correction codewords for the given sequence of data codewords. fn get_remainder(&self, data: &[u8]) -> Vec<u8> { // Compute the remainder by performing polynomial division let mut result = vec![0u8; self.coefficients.len()]; for b in data { let factor: u8 = b ^ result.remove(0); result.push(0); for (x, y) in result.iter_mut().zip(self.coefficients.iter()) { *x ^= ReedSolomonGenerator::multiply(*y, factor); } } result } // Returns the product of the two given field elements modulo GF(2^8/0x11D). The arguments and result // are unsigned 8-bit integers. This could be implemented as a lookup table of 256*256 entries of uint8. fn multiply(x: u8, y: u8) -> u8 { // Russian peasant multiplication let mut z: u8 = 0; for i in (0 .. 8).rev() { z = (z << 1) ^ ((z >> 7) * 0x1D); z ^= ((y >> i) & 1) * x; } z } } /*---- QrSegment functionality ----*/ // Represents a segment of character data, binary data, or control data // to be put into a QR Code symbol. Instances of this class are immutable. #[derive(Clone)] pub struct QrSegment { // The mode indicator for this segment. mode: QrSegmentMode, // The length of this segment's unencoded data, measured in characters. numchars: usize, // The bits of this segment. data: Vec<bool>, } impl QrSegment { /*---- Static factory functions ----*/ // Returns a segment representing the given binary data encoded in byte mode. pub fn make_bytes(data: &[u8]) -> Self { let mut bb = BitBuffer(Vec::with_capacity(data.len() * 8)); for b in data { bb.append_bits(*b as u32, 8); } QrSegment::new(QrSegmentMode::Byte, data.len(), bb.0) } // Returns a segment representing the given string of decimal digits encoded in numeric mode. // Panics if the string contains non-digit characters. pub fn make_numeric(text: &[char]) -> Self { let mut bb = BitBuffer(Vec::with_capacity(text.len() * 3 + (text.len() + 2) / 3)); let mut accumdata: u32 = 0; let mut accumcount: u8 = 0; for c in text { assert!('0' <= *c && *c <= '9', "String contains non-numeric characters"); accumdata = accumdata * 10 + ((*c as u32) - ('0' as u32)); accumcount += 1; if accumcount == 3 { bb.append_bits(accumdata, 10); accumdata = 0; accumcount = 0; } } if accumcount > 0 { // 1 or 2 digits remaining bb.append_bits(accumdata, accumcount * 3 + 1); } QrSegment::new(QrSegmentMode::Numeric, text.len(), bb.0) } // Returns a segment representing the given text string encoded in alphanumeric mode. // The characters allowed are: 0 to 9, A to Z (uppercase only), space, dollar, percent, asterisk, // plus, hyphen, period, slash, colon. Panics if the string contains non-encodable characters. pub fn make_alphanumeric(text: &[char]) -> Self { let mut bb = BitBuffer(Vec::with_capacity(text.len() * 5 + (text.len() + 1) / 2)); let mut accumdata: u32 = 0; let mut accumcount: u32 = 0; for c in text { let i = match ALPHANUMERIC_CHARSET.iter().position(|x| *x == *c) { None => panic!("String contains unencodable characters in alphanumeric mode"), Some(j) => j, }; accumdata = accumdata * 45 + (i as u32); accumcount += 1; if accumcount == 2 { bb.append_bits(accumdata, 11); accumdata = 0; accumcount = 0; } } if accumcount > 0 { // 1 character remaining bb.append_bits(accumdata, 6); } QrSegment::new(QrSegmentMode::Alphanumeric, text.len(), bb.0) } // Returns a new mutable list of zero or more segments to represent the given Unicode text string. // The result may use various segment modes and switch modes to optimize the length of the bit stream. pub fn make_segments(text: &[char]) -> Vec<Self> { if text.is_empty() { vec![] } else if QrSegment::is_numeric(text) { vec![QrSegment::make_numeric(text)] } else if QrSegment::is_alphanumeric(text) { vec![QrSegment::make_alphanumeric(text)] } else { let s: String = text.iter().cloned().collect(); vec![QrSegment::make_bytes(s.as_bytes())] } } // Returns a segment representing an Extended Channel Interpretation // (ECI) designator with the given assignment value. pub fn make_eci(assignval: u32) -> Self { let mut bb = BitBuffer(Vec::with_capacity(24)); if assignval < (1 << 7) { bb.append_bits(assignval, 8); } else if assignval < (1 << 14) { bb.append_bits(2, 2); bb.append_bits(assignval, 14); } else if assignval < 1_000_000 { bb.append_bits(6, 3); bb.append_bits(assignval, 21); } else { panic!("ECI assignment value out of range"); } QrSegment::new(QrSegmentMode::Eci, 0, bb.0) } // Creates a new QR Code segment with the given parameters and data. pub fn new(mode: QrSegmentMode, numchars: usize, data: Vec<bool>) -> Self { Self { mode: mode, numchars: numchars, data: data, } } /*---- Instance field getters ----*/ // Returns the mode indicator for this segment. pub fn mode(&self) -> QrSegmentMode { self.mode } // Returns the length of this segment's unencoded data, measured in characters. pub fn num_chars(&self) -> usize { self.numchars } // Returns a view of the bits of this segment. pub fn data(&self) -> &Vec<bool> { &self.data } /*---- Other static functions ----*/ // Calculates and returns the number of bits needed to encode the given // segments at the given version. The result is None if a segment has too many // characters to fit its length field, or the total bits exceeds usize::MAX. fn get_total_bits(segs: &[Self], version: Version) -> Option<usize> { let mut result: usize = 0; for seg in segs { let ccbits = seg.mode.num_char_count_bits(version); if seg.numchars >= 1 << ccbits { return None; // The segment's length doesn't fit the field's bit width } match result.checked_add(4 + (ccbits as usize) + seg.data.len()) { None => return None, // The sum will overflow a usize type Some(val) => result = val, } } Some(result) } // Tests whether the given string can be encoded as a segment in alphanumeric mode. fn is_alphanumeric(text: &[char]) -> bool { text.iter().all(|c| ALPHANUMERIC_CHARSET.contains(c)) } // Tests whether the given string can be encoded as a segment in numeric mode. fn is_numeric(text: &[char]) -> bool { text.iter().all(|c| '0' <= *c && *c <= '9') } } // The set of all legal characters in alphanumeric mode, // where each character value maps to the index in the string. static ALPHANUMERIC_CHARSET: [char; 45] = ['0','1','2','3','4','5','6','7','8','9', 'A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z', ' ','$','%','*','+','-','.','/',':']; /*---- QrSegmentMode functionality ----*/ // The mode field of a segment. Immutable. #[derive(Clone, Copy)] pub enum QrSegmentMode { Numeric, Alphanumeric, Byte, Kanji, Eci, } impl QrSegmentMode { // Returns an unsigned 4-bit integer value (range 0 to 15) // representing the mode indicator bits for this mode object. fn mode_bits(&self) -> u32 { use QrSegmentMode::*; match *self { Numeric => 0x1, Alphanumeric => 0x2, Byte => 0x4, Kanji => 0x8, Eci => 0x7, } } // Returns the bit width of the segment character count field // for this mode object at the given version number. pub fn num_char_count_bits(&self, ver: Version) -> u8 { use QrSegmentMode::*; (match *self { Numeric => [10, 12, 14], Alphanumeric => [ 9, 11, 13], Byte => [ 8, 16, 16], Kanji => [ 8, 10, 12], Eci => [ 0, 0, 0], })[((ver.value() + 7) / 17) as usize] } } /*---- Bit buffer functionality ----*/ // An appendable sequence of bits (0s and 1s). pub struct BitBuffer(pub Vec<bool>); impl BitBuffer { // Appends the given number of low bits of the given value // to this sequence. Requires 0 <= len <= 31 and 0 <= val < 2^len. pub fn append_bits(&mut self, val: u32, len: u8) { assert!(len <= 31 && (val >> len) == 0, "Value out of range"); self.0.extend((0 .. len as i32).rev().map(|i| get_bit(val, i))); // Append bit by bit } } /*---- Miscellaneous values ----*/ #[derive(Copy, Clone)] pub struct Version(u8); impl Version { pub fn new(ver: u8) -> Self { assert!(QrCode_MIN_VERSION.value() <= ver && ver <= QrCode_MAX_VERSION.value(), "Version number out of range"); Version(ver) } pub fn value(&self) -> u8 { self.0 } } #[derive(Copy, Clone)] pub struct Mask(u8); impl Mask { pub fn new(mask: u8) -> Self { assert!(mask <= 7, "Mask value out of range"); Mask(mask) } pub fn value(&self) -> u8 { self.0 } } // Returns true iff the i'th bit of x is set to 1. fn get_bit(x: u32, i: i32) -> bool { (x >> i) & 1 != 0 }