# # QR Code generator library (Python) # # Copyright (c) Project Nayuki. (MIT License) # https://www.nayuki.io/page/qr-code-generator-library # # Permission is hereby granted, free of charge, to any person obtaining a copy of # this software and associated documentation files (the "Software"), to deal in # the Software without restriction, including without limitation the rights to # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of # the Software, and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # - The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # - The Software is provided "as is", without warranty of any kind, express or # implied, including but not limited to the warranties of merchantability, # fitness for a particular purpose and noninfringement. In no event shall the # authors or copyright holders be liable for any claim, damages or other # liability, whether in an action of contract, tort or otherwise, arising from, # out of or in connection with the Software or the use or other dealings in the # Software. # from __future__ import annotations import collections, itertools, re from collections.abc import Sequence from typing import Callable, Deque, Dict, List, Optional, Pattern, Tuple, Union # ---- QR Code symbol class ---- class QrCode: """A QR Code symbol, which is a type of two-dimension barcode. Invented by Denso Wave and described in the ISO/IEC 18004 standard. Instances of this class represent an immutable square grid of dark and light cells. The class provides static factory functions to create a QR Code from text or binary data. The class covers the QR Code Model 2 specification, supporting all versions (sizes) from 1 to 40, all 4 error correction levels, and 4 character encoding modes. Ways to create a QR Code object: - High level: Take the payload data and call QrCode.encode_text() or QrCode.encode_binary(). - Mid level: Custom-make the list of segments and call QrCode.encode_segments(). - Low level: Custom-make the array of data codeword bytes (including segment headers and final padding, excluding error correction codewords), supply the appropriate version number, and call the QrCode() constructor. (Note that all ways require supplying the desired error correction level.)""" # ---- Static factory functions (high level) ---- @staticmethod def encode_text(text: str, ecl: QrCode.Ecc) -> QrCode: """Returns a QR Code representing the given Unicode text string at the given error correction level. As a conservative upper bound, this function is guaranteed to succeed for strings that have 738 or fewer Unicode code points (not UTF-16 code units) if the low error correction level is used. The smallest possible QR Code version is automatically chosen for the output. The ECC level of the result may be higher than the ecl argument if it can be done without increasing the version.""" segs: List[QrSegment] = QrSegment.make_segments(text) return QrCode.encode_segments(segs, ecl) @staticmethod def encode_binary(data: Union[bytes,Sequence[int]], ecl: QrCode.Ecc) -> QrCode: """Returns a QR Code representing the given binary data at the given error correction level. This function always encodes using the binary segment mode, not any text mode. The maximum number of bytes allowed is 2953. The smallest possible QR Code version is automatically chosen for the output. The ECC level of the result may be higher than the ecl argument if it can be done without increasing the version.""" return QrCode.encode_segments([QrSegment.make_bytes(data)], ecl) # ---- Static factory functions (mid level) ---- @staticmethod def encode_segments(segs: Sequence[QrSegment], ecl: QrCode.Ecc, minversion: int = 1, maxversion: int = 40, mask: int = -1, boostecl: bool = True) -> QrCode: """Returns a QR Code representing the given segments with the given encoding parameters. The smallest possible QR Code version within the given range is automatically chosen for the output. Iff boostecl is true, then the ECC level of the result may be higher than the ecl argument if it can be done without increasing the version. The mask number is either between 0 to 7 (inclusive) to force that mask, or -1 to automatically choose an appropriate mask (which may be slow). This function allows the user to create a custom sequence of segments that switches between modes (such as alphanumeric and byte) to encode text in less space. This is a mid-level API; the high-level API is encode_text() and encode_binary().""" if not (QrCode.MIN_VERSION <= minversion <= maxversion <= QrCode.MAX_VERSION) or not (-1 <= mask <= 7): raise ValueError("Invalid value") # Find the minimal version number to use for version in range(minversion, maxversion + 1): datacapacitybits: int = QrCode._get_num_data_codewords(version, ecl) * 8 # Number of data bits available datausedbits: Optional[int] = QrSegment.get_total_bits(segs, version) if (datausedbits is not None) and (datausedbits <= datacapacitybits): break # This version number is found to be suitable if version >= maxversion: # All versions in the range could not fit the given data msg: str = "Segment too long" if datausedbits is not None: msg = f"Data length = {datausedbits} bits, Max capacity = {datacapacitybits} bits" raise DataTooLongError(msg) assert datausedbits is not None # Increase the error correction level while the data still fits in the current version number for newecl in (QrCode.Ecc.MEDIUM, QrCode.Ecc.QUARTILE, QrCode.Ecc.HIGH): # From low to high if boostecl and (datausedbits <= QrCode._get_num_data_codewords(version, newecl) * 8): ecl = newecl # Concatenate all segments to create the data bit string bb = _BitBuffer() for seg in segs: bb.append_bits(seg.get_mode().get_mode_bits(), 4) bb.append_bits(seg.get_num_chars(), seg.get_mode().num_char_count_bits(version)) bb.extend(seg._bitdata) assert len(bb) == datausedbits # Add terminator and pad up to a byte if applicable datacapacitybits = QrCode._get_num_data_codewords(version, ecl) * 8 assert len(bb) <= datacapacitybits bb.append_bits(0, min(4, datacapacitybits - len(bb))) bb.append_bits(0, -len(bb) % 8) # Note: Python's modulo on negative numbers behaves better than C family languages assert len(bb) % 8 == 0 # Pad with alternating bytes until data capacity is reached for padbyte in itertools.cycle((0xEC, 0x11)): if len(bb) >= datacapacitybits: break bb.append_bits(padbyte, 8) # Pack bits into bytes in big endian datacodewords = bytearray([0] * (len(bb) // 8)) for (i, bit) in enumerate(bb): datacodewords[i >> 3] |= bit << (7 - (i & 7)) # Create the QR Code object return QrCode(version, ecl, datacodewords, mask) # ---- Private fields ---- # The version number of this QR Code, which is between 1 and 40 (inclusive). # This determines the size of this barcode. _version: int # The width and height of this QR Code, measured in modules, between # 21 and 177 (inclusive). This is equal to version * 4 + 17. _size: int # The error correction level used in this QR Code. _errcorlvl: QrCode.Ecc # The index of the mask pattern used in this QR Code, which is between 0 and 7 (inclusive). # Even if a QR Code is created with automatic masking requested (mask = -1), # the resulting object still has a mask value between 0 and 7. _mask: int # The modules of this QR Code (False = light, True = dark). # Immutable after constructor finishes. Accessed through get_module(). _modules: List[List[bool]] # Indicates function modules that are not subjected to masking. Discarded when constructor finishes. _isfunction: List[List[bool]] # ---- Constructor (low level) ---- def __init__(self, version: int, errcorlvl: QrCode.Ecc, datacodewords: Union[bytes,Sequence[int]], msk: int) -> None: """Creates a new QR Code with the given version number, error correction level, data codeword bytes, and mask number. This is a low-level API that most users should not use directly. A mid-level API is the encode_segments() function.""" # Check scalar arguments and set fields if not (QrCode.MIN_VERSION <= version <= QrCode.MAX_VERSION): raise ValueError("Version value out of range") if not (-1 <= msk <= 7): raise ValueError("Mask value out of range") self._version = version self._size = version * 4 + 17 self._errcorlvl = errcorlvl # Initialize both grids to be size*size arrays of Boolean false self._modules = [[False] * self._size for _ in range(self._size)] # Initially all light self._isfunction = [[False] * self._size for _ in range(self._size)] # Compute ECC, draw modules self._draw_function_patterns() allcodewords: bytes = self._add_ecc_and_interleave(bytearray(datacodewords)) self._draw_codewords(allcodewords) # Do masking if msk == -1: # Automatically choose best mask minpenalty: int = 1 << 32 for i in range(8): self._apply_mask(i) self._draw_format_bits(i) penalty = self._get_penalty_score() if penalty < minpenalty: msk = i minpenalty = penalty self._apply_mask(i) # Undoes the mask due to XOR assert 0 <= msk <= 7 self._mask = msk self._apply_mask(msk) # Apply the final choice of mask self._draw_format_bits(msk) # Overwrite old format bits del self._isfunction # ---- Accessor methods ---- def get_version(self) -> int: """Returns this QR Code's version number, in the range [1, 40].""" return self._version def get_size(self) -> int: """Returns this QR Code's size, in the range [21, 177].""" return self._size def get_error_correction_level(self) -> QrCode.Ecc: """Returns this QR Code's error correction level.""" return self._errcorlvl def get_mask(self) -> int: """Returns this QR Code's mask, in the range [0, 7].""" return self._mask def get_module(self, x: int, y: int) -> bool: """Returns the color of the module (pixel) at the given coordinates, which is False for light or True for dark. The top left corner has the coordinates (x=0, y=0). If the given coordinates are out of bounds, then False (light) is returned.""" return (0 <= x < self._size) and (0 <= y < self._size) and self._modules[y][x] # ---- Private helper methods for constructor: Drawing function modules ---- def _draw_function_patterns(self) -> None: """Reads this object's version field, and draws and marks all function modules.""" # Draw horizontal and vertical timing patterns for i in range(self._size): self._set_function_module(6, i, i % 2 == 0) self._set_function_module(i, 6, i % 2 == 0) # Draw 3 finder patterns (all corners except bottom right; overwrites some timing modules) self._draw_finder_pattern(3, 3) self._draw_finder_pattern(self._size - 4, 3) self._draw_finder_pattern(3, self._size - 4) # Draw numerous alignment patterns alignpatpos: List[int] = self._get_alignment_pattern_positions() numalign: int = len(alignpatpos) skips: Sequence[Tuple[int,int]] = ((0, 0), (0, numalign - 1), (numalign - 1, 0)) for i in range(numalign): for j in range(numalign): if (i, j) not in skips: # Don't draw on the three finder corners self._draw_alignment_pattern(alignpatpos[i], alignpatpos[j]) # Draw configuration data self._draw_format_bits(0) # Dummy mask value; overwritten later in the constructor self._draw_version() def _draw_format_bits(self, mask: int) -> None: """Draws two copies of the format bits (with its own error correction code) based on the given mask and this object's error correction level field.""" # Calculate error correction code and pack bits data: int = self._errcorlvl.formatbits << 3 | mask # errCorrLvl is uint2, mask is uint3 rem: int = data for _ in range(10): rem = (rem << 1) ^ ((rem >> 9) * 0x537) bits: int = (data << 10 | rem) ^ 0x5412 # uint15 assert bits >> 15 == 0 # Draw first copy for i in range(0, 6): self._set_function_module(8, i, _get_bit(bits, i)) self._set_function_module(8, 7, _get_bit(bits, 6)) self._set_function_module(8, 8, _get_bit(bits, 7)) self._set_function_module(7, 8, _get_bit(bits, 8)) for i in range(9, 15): self._set_function_module(14 - i, 8, _get_bit(bits, i)) # Draw second copy for i in range(0, 8): self._set_function_module(self._size - 1 - i, 8, _get_bit(bits, i)) for i in range(8, 15): self._set_function_module(8, self._size - 15 + i, _get_bit(bits, i)) self._set_function_module(8, self._size - 8, True) # Always dark def _draw_version(self) -> None: """Draws two copies of the version bits (with its own error correction code), based on this object's version field, iff 7 <= version <= 40.""" if self._version < 7: return # Calculate error correction code and pack bits rem: int = self._version # version is uint6, in the range [7, 40] for _ in range(12): rem = (rem << 1) ^ ((rem >> 11) * 0x1F25) bits: int = self._version << 12 | rem # uint18 assert bits >> 18 == 0 # Draw two copies for i in range(18): bit: bool = _get_bit(bits, i) a: int = self._size - 11 + i % 3 b: int = i // 3 self._set_function_module(a, b, bit) self._set_function_module(b, a, bit) def _draw_finder_pattern(self, x: int, y: int) -> None: """Draws a 9*9 finder pattern including the border separator, with the center module at (x, y). Modules can be out of bounds.""" for dy in range(-4, 5): for dx in range(-4, 5): xx, yy = x + dx, y + dy if (0 <= xx < self._size) and (0 <= yy < self._size): # Chebyshev/infinity norm self._set_function_module(xx, yy, max(abs(dx), abs(dy)) not in (2, 4)) def _draw_alignment_pattern(self, x: int, y: int) -> None: """Draws a 5*5 alignment pattern, with the center module at (x, y). All modules must be in bounds.""" for dy in range(-2, 3): for dx in range(-2, 3): self._set_function_module(x + dx, y + dy, max(abs(dx), abs(dy)) != 1) def _set_function_module(self, x: int, y: int, isdark: bool) -> None: """Sets the color of a module and marks it as a function module. Only used by the constructor. Coordinates must be in bounds.""" assert type(isdark) is bool self._modules[y][x] = isdark self._isfunction[y][x] = True # ---- Private helper methods for constructor: Codewords and masking ---- def _add_ecc_and_interleave(self, data: bytearray) -> bytes: """Returns a new byte string representing the given data with the appropriate error correction codewords appended to it, based on this object's version and error correction level.""" version: int = self._version assert len(data) == QrCode._get_num_data_codewords(version, self._errcorlvl) # Calculate parameter numbers numblocks: int = QrCode._NUM_ERROR_CORRECTION_BLOCKS[self._errcorlvl.ordinal][version] blockecclen: int = QrCode._ECC_CODEWORDS_PER_BLOCK [self._errcorlvl.ordinal][version] rawcodewords: int = QrCode._get_num_raw_data_modules(version) // 8 numshortblocks: int = numblocks - rawcodewords % numblocks shortblocklen: int = rawcodewords // numblocks # Split data into blocks and append ECC to each block blocks: List[bytes] = [] rsdiv: bytes = QrCode._reed_solomon_compute_divisor(blockecclen) k: int = 0 for i in range(numblocks): dat: bytearray = data[k : k + shortblocklen - blockecclen + (0 if i < numshortblocks else 1)] k += len(dat) ecc: bytes = QrCode._reed_solomon_compute_remainder(dat, rsdiv) if i < numshortblocks: dat.append(0) blocks.append(dat + ecc) assert k == len(data) # Interleave (not concatenate) the bytes from every block into a single sequence result = bytearray() for i in range(len(blocks[0])): for (j, blk) in enumerate(blocks): # Skip the padding byte in short blocks if (i != shortblocklen - blockecclen) or (j >= numshortblocks): result.append(blk[i]) assert len(result) == rawcodewords return result def _draw_codewords(self, data: bytes) -> None: """Draws the given sequence of 8-bit codewords (data and error correction) onto the entire data area of this QR Code. Function modules need to be marked off before this is called.""" assert len(data) == QrCode._get_num_raw_data_modules(self._version) // 8 i: int = 0 # Bit index into the data # Do the funny zigzag scan for right in range(self._size - 1, 0, -2): # Index of right column in each column pair if right <= 6: right -= 1 for vert in range(self._size): # Vertical counter for j in range(2): x: int = right - j # Actual x coordinate upward: bool = (right + 1) & 2 == 0 y: int = (self._size - 1 - vert) if upward else vert # Actual y coordinate if (not self._isfunction[y][x]) and (i < len(data) * 8): self._modules[y][x] = _get_bit(data[i >> 3], 7 - (i & 7)) i += 1 # If this QR Code has any remainder bits (0 to 7), they were assigned as # 0/false/light by the constructor and are left unchanged by this method assert i == len(data) * 8 def _apply_mask(self, mask: int) -> None: """XORs the codeword modules in this QR Code with the given mask pattern. The function modules must be marked and the codeword bits must be drawn before masking. Due to the arithmetic of XOR, calling _apply_mask() with the same mask value a second time will undo the mask. A final well-formed QR Code needs exactly one (not zero, two, etc.) mask applied.""" if not (0 <= mask <= 7): raise ValueError("Mask value out of range") masker: Callable[[int,int],int] = QrCode._MASK_PATTERNS[mask] for y in range(self._size): for x in range(self._size): self._modules[y][x] ^= (masker(x, y) == 0) and (not self._isfunction[y][x]) def _get_penalty_score(self) -> int: """Calculates and returns the penalty score based on state of this QR Code's current modules. This is used by the automatic mask choice algorithm to find the mask pattern that yields the lowest score.""" result: int = 0 size: int = self._size modules: List[List[bool]] = self._modules # Adjacent modules in row having same color, and finder-like patterns for y in range(size): runcolor: bool = False runx: int = 0 runhistory = collections.deque([0] * 7, 7) for x in range(size): if modules[y][x] == runcolor: runx += 1 if runx == 5: result += QrCode._PENALTY_N1 elif runx > 5: result += 1 else: self._finder_penalty_add_history(runx, runhistory) if not runcolor: result += self._finder_penalty_count_patterns(runhistory) * QrCode._PENALTY_N3 runcolor = modules[y][x] runx = 1 result += self._finder_penalty_terminate_and_count(runcolor, runx, runhistory) * QrCode._PENALTY_N3 # Adjacent modules in column having same color, and finder-like patterns for x in range(size): runcolor = False runy: int = 0 runhistory = collections.deque([0] * 7, 7) for y in range(size): if modules[y][x] == runcolor: runy += 1 if runy == 5: result += QrCode._PENALTY_N1 elif runy > 5: result += 1 else: self._finder_penalty_add_history(runy, runhistory) if not runcolor: result += self._finder_penalty_count_patterns(runhistory) * QrCode._PENALTY_N3 runcolor = modules[y][x] runy = 1 result += self._finder_penalty_terminate_and_count(runcolor, runy, runhistory) * QrCode._PENALTY_N3 # 2*2 blocks of modules having same color for y in range(size - 1): for x in range(size - 1): if modules[y][x] == modules[y][x + 1] == modules[y + 1][x] == modules[y + 1][x + 1]: result += QrCode._PENALTY_N2 # Balance of dark and light modules dark: int = sum((1 if cell else 0) for row in modules for cell in row) total: int = size**2 # Note that size is odd, so dark/total != 1/2 # Compute the smallest integer k >= 0 such that (45-5k)% <= dark/total <= (55+5k)% k: int = (abs(dark * 20 - total * 10) + total - 1) // total - 1 assert 0 <= k <= 9 result += k * QrCode._PENALTY_N4 assert 0 <= result <= 2568888 # Non-tight upper bound based on default values of PENALTY_N1, ..., N4 return result # ---- Private helper functions ---- def _get_alignment_pattern_positions(self) -> List[int]: """Returns an ascending list of positions of alignment patterns for this version number. Each position is in the range [0,177), and are used on both the x and y axes. This could be implemented as lookup table of 40 variable-length lists of integers.""" ver: int = self._version if ver == 1: return [] else: numalign: int = ver // 7 + 2 step: int = 26 if (ver == 32) else \ (ver * 4 + numalign * 2 + 1) // (numalign * 2 - 2) * 2 result: List[int] = [(self._size - 7 - i * step) for i in range(numalign - 1)] + [6] return list(reversed(result)) @staticmethod def _get_num_raw_data_modules(ver: int) -> int: """Returns the number of data bits that can be stored in a QR Code of the given version number, after all function modules are excluded. This includes remainder bits, so it might not be a multiple of 8. The result is in the range [208, 29648]. This could be implemented as a 40-entry lookup table.""" if not (QrCode.MIN_VERSION <= ver <= QrCode.MAX_VERSION): raise ValueError("Version number out of range") result: int = (16 * ver + 128) * ver + 64 if ver >= 2: numalign: int = ver // 7 + 2 result -= (25 * numalign - 10) * numalign - 55 if ver >= 7: result -= 36 assert 208 <= result <= 29648 return result @staticmethod def _get_num_data_codewords(ver: int, ecl: QrCode.Ecc) -> int: """Returns the number of 8-bit data (i.e. not error correction) codewords contained in any QR Code of the given version number and error correction level, with remainder bits discarded. This stateless pure function could be implemented as a (40*4)-cell lookup table.""" return QrCode._get_num_raw_data_modules(ver) // 8 \ - QrCode._ECC_CODEWORDS_PER_BLOCK [ecl.ordinal][ver] \ * QrCode._NUM_ERROR_CORRECTION_BLOCKS[ecl.ordinal][ver] @staticmethod def _reed_solomon_compute_divisor(degree: int) -> bytes: """Returns a Reed-Solomon ECC generator polynomial for the given degree. This could be implemented as a lookup table over all possible parameter values, instead of as an algorithm.""" if not (1 <= degree <= 255): raise ValueError("Degree out of range") # Polynomial coefficients are stored from highest to lowest power, excluding the leading term which is always 1. # For example the polynomial x^3 + 255x^2 + 8x + 93 is stored as the uint8 array [255, 8, 93]. result = bytearray([0] * (degree - 1) + [1]) # Start off with the monomial x^0 # Compute the product polynomial (x - r^0) * (x - r^1) * (x - r^2) * ... * (x - r^{degree-1}), # and drop the highest monomial term which is always 1x^degree. # Note that r = 0x02, which is a generator element of this field GF(2^8/0x11D). root: int = 1 for _ in range(degree): # Unused variable i # Multiply the current product by (x - r^i) for j in range(degree): result[j] = QrCode._reed_solomon_multiply(result[j], root) if j + 1 < degree: result[j] ^= result[j + 1] root = QrCode._reed_solomon_multiply(root, 0x02) return result @staticmethod def _reed_solomon_compute_remainder(data: bytes, divisor: bytes) -> bytes: """Returns the Reed-Solomon error correction codeword for the given data and divisor polynomials.""" result = bytearray([0] * len(divisor)) for b in data: # Polynomial division factor: int = b ^ result.pop(0) result.append(0) for (i, coef) in enumerate(divisor): result[i] ^= QrCode._reed_solomon_multiply(coef, factor) return result @staticmethod def _reed_solomon_multiply(x: int, y: int) -> int: """Returns the product of the two given field elements modulo GF(2^8/0x11D). The arguments and result are unsigned 8-bit integers. This could be implemented as a lookup table of 256*256 entries of uint8.""" if (x >> 8 != 0) or (y >> 8 != 0): raise ValueError("Byte out of range") # Russian peasant multiplication z: int = 0 for i in reversed(range(8)): z = (z << 1) ^ ((z >> 7) * 0x11D) z ^= ((y >> i) & 1) * x assert z >> 8 == 0 return z def _finder_penalty_count_patterns(self, runhistory: Deque[int]) -> int: """Can only be called immediately after a light run is added, and returns either 0, 1, or 2. A helper function for _get_penalty_score().""" n: int = runhistory[1] assert n <= self._size * 3 core: bool = n > 0 and (runhistory[2] == runhistory[4] == runhistory[5] == n) and runhistory[3] == n * 3 return (1 if (core and runhistory[0] >= n * 4 and runhistory[6] >= n) else 0) \ + (1 if (core and runhistory[6] >= n * 4 and runhistory[0] >= n) else 0) def _finder_penalty_terminate_and_count(self, currentruncolor: bool, currentrunlength: int, runhistory: Deque[int]) -> int: """Must be called at the end of a line (row or column) of modules. A helper function for _get_penalty_score().""" if currentruncolor: # Terminate dark run self._finder_penalty_add_history(currentrunlength, runhistory) currentrunlength = 0 currentrunlength += self._size # Add light border to final run self._finder_penalty_add_history(currentrunlength, runhistory) return self._finder_penalty_count_patterns(runhistory) def _finder_penalty_add_history(self, currentrunlength: int, runhistory: Deque[int]) -> None: if runhistory[0] == 0: currentrunlength += self._size # Add light border to initial run runhistory.appendleft(currentrunlength) # ---- Constants and tables ---- MIN_VERSION: int = 1 # The minimum version number supported in the QR Code Model 2 standard MAX_VERSION: int = 40 # The maximum version number supported in the QR Code Model 2 standard # For use in _get_penalty_score(), when evaluating which mask is best. _PENALTY_N1: int = 3 _PENALTY_N2: int = 3 _PENALTY_N3: int = 40 _PENALTY_N4: int = 10 _ECC_CODEWORDS_PER_BLOCK: Sequence[Sequence[int]] = ( # Version: (note that index 0 is for padding, and is set to an illegal value) # 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 Error correction level (-1, 7, 10, 15, 20, 26, 18, 20, 24, 30, 18, 20, 24, 26, 30, 22, 24, 28, 30, 28, 28, 28, 28, 30, 30, 26, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30), # Low (-1, 10, 16, 26, 18, 24, 16, 18, 22, 22, 26, 30, 22, 22, 24, 24, 28, 28, 26, 26, 26, 26, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28), # Medium (-1, 13, 22, 18, 26, 18, 24, 18, 22, 20, 24, 28, 26, 24, 20, 30, 24, 28, 28, 26, 30, 28, 30, 30, 30, 30, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30), # Quartile (-1, 17, 28, 22, 16, 22, 28, 26, 26, 24, 28, 24, 28, 22, 24, 24, 30, 28, 28, 26, 28, 30, 24, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30)) # High _NUM_ERROR_CORRECTION_BLOCKS: Sequence[Sequence[int]] = ( # Version: (note that index 0 is for padding, and is set to an illegal value) # 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 Error correction level (-1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 4, 4, 4, 6, 6, 6, 6, 7, 8, 8, 9, 9, 10, 12, 12, 12, 13, 14, 15, 16, 17, 18, 19, 19, 20, 21, 22, 24, 25), # Low (-1, 1, 1, 1, 2, 2, 4, 4, 4, 5, 5, 5, 8, 9, 9, 10, 10, 11, 13, 14, 16, 17, 17, 18, 20, 21, 23, 25, 26, 28, 29, 31, 33, 35, 37, 38, 40, 43, 45, 47, 49), # Medium (-1, 1, 1, 2, 2, 4, 4, 6, 6, 8, 8, 8, 10, 12, 16, 12, 17, 16, 18, 21, 20, 23, 23, 25, 27, 29, 34, 34, 35, 38, 40, 43, 45, 48, 51, 53, 56, 59, 62, 65, 68), # Quartile (-1, 1, 1, 2, 4, 4, 4, 5, 6, 8, 8, 11, 11, 16, 16, 18, 16, 19, 21, 25, 25, 25, 34, 30, 32, 35, 37, 40, 42, 45, 48, 51, 54, 57, 60, 63, 66, 70, 74, 77, 81)) # High _MASK_PATTERNS: Sequence[Callable[[int,int],int]] = ( (lambda x, y: (x + y) % 2 ), (lambda x, y: y % 2 ), (lambda x, y: x % 3 ), (lambda x, y: (x + y) % 3 ), (lambda x, y: (x // 3 + y // 2) % 2 ), (lambda x, y: x * y % 2 + x * y % 3 ), (lambda x, y: (x * y % 2 + x * y % 3) % 2 ), (lambda x, y: ((x + y) % 2 + x * y % 3) % 2), ) # ---- Public helper enumeration ---- class Ecc: ordinal: int # (Public) In the range 0 to 3 (unsigned 2-bit integer) formatbits: int # (Package-private) In the range 0 to 3 (unsigned 2-bit integer) """The error correction level in a QR Code symbol. Immutable.""" # Private constructor def __init__(self, i: int, fb: int) -> None: self.ordinal = i self.formatbits = fb # Placeholders LOW : QrCode.Ecc MEDIUM : QrCode.Ecc QUARTILE: QrCode.Ecc HIGH : QrCode.Ecc # Public constants. Create them outside the class. Ecc.LOW = Ecc(0, 1) # The QR Code can tolerate about 7% erroneous codewords Ecc.MEDIUM = Ecc(1, 0) # The QR Code can tolerate about 15% erroneous codewords Ecc.QUARTILE = Ecc(2, 3) # The QR Code can tolerate about 25% erroneous codewords Ecc.HIGH = Ecc(3, 2) # The QR Code can tolerate about 30% erroneous codewords # ---- Data segment class ---- class QrSegment: """A segment of character/binary/control data in a QR Code symbol. Instances of this class are immutable. The mid-level way to create a segment is to take the payload data and call a static factory function such as QrSegment.make_numeric(). The low-level way to create a segment is to custom-make the bit buffer and call the QrSegment() constructor with appropriate values. This segment class imposes no length restrictions, but QR Codes have restrictions. Even in the most favorable conditions, a QR Code can only hold 7089 characters of data. Any segment longer than this is meaningless for the purpose of generating QR Codes.""" # ---- Static factory functions (mid level) ---- @staticmethod def make_bytes(data: Union[bytes,Sequence[int]]) -> QrSegment: """Returns a segment representing the given binary data encoded in byte mode. All input byte lists are acceptable. Any text string can be converted to UTF-8 bytes (s.encode("UTF-8")) and encoded as a byte mode segment.""" bb = _BitBuffer() for b in data: bb.append_bits(b, 8) return QrSegment(QrSegment.Mode.BYTE, len(data), bb) @staticmethod def make_numeric(digits: str) -> QrSegment: """Returns a segment representing the given string of decimal digits encoded in numeric mode.""" if not QrSegment.is_numeric(digits): raise ValueError("String contains non-numeric characters") bb = _BitBuffer() i: int = 0 while i < len(digits): # Consume up to 3 digits per iteration n: int = min(len(digits) - i, 3) bb.append_bits(int(digits[i : i + n]), n * 3 + 1) i += n return QrSegment(QrSegment.Mode.NUMERIC, len(digits), bb) @staticmethod def make_alphanumeric(text: str) -> QrSegment: """Returns a segment representing the given text string encoded in alphanumeric mode. The characters allowed are: 0 to 9, A to Z (uppercase only), space, dollar, percent, asterisk, plus, hyphen, period, slash, colon.""" if not QrSegment.is_alphanumeric(text): raise ValueError("String contains unencodable characters in alphanumeric mode") bb = _BitBuffer() for i in range(0, len(text) - 1, 2): # Process groups of 2 temp: int = QrSegment._ALPHANUMERIC_ENCODING_TABLE[text[i]] * 45 temp += QrSegment._ALPHANUMERIC_ENCODING_TABLE[text[i + 1]] bb.append_bits(temp, 11) if len(text) % 2 > 0: # 1 character remaining bb.append_bits(QrSegment._ALPHANUMERIC_ENCODING_TABLE[text[-1]], 6) return QrSegment(QrSegment.Mode.ALPHANUMERIC, len(text), bb) @staticmethod def make_segments(text: str) -> List[QrSegment]: """Returns a new mutable list of zero or more segments to represent the given Unicode text string. The result may use various segment modes and switch modes to optimize the length of the bit stream.""" # Select the most efficient segment encoding automatically if text == "": return [] elif QrSegment.is_numeric(text): return [QrSegment.make_numeric(text)] elif QrSegment.is_alphanumeric(text): return [QrSegment.make_alphanumeric(text)] else: return [QrSegment.make_bytes(text.encode("UTF-8"))] @staticmethod def make_eci(assignval: int) -> QrSegment: """Returns a segment representing an Extended Channel Interpretation (ECI) designator with the given assignment value.""" bb = _BitBuffer() if assignval < 0: raise ValueError("ECI assignment value out of range") elif assignval < (1 << 7): bb.append_bits(assignval, 8) elif assignval < (1 << 14): bb.append_bits(0b10, 2) bb.append_bits(assignval, 14) elif assignval < 1000000: bb.append_bits(0b110, 3) bb.append_bits(assignval, 21) else: raise ValueError("ECI assignment value out of range") return QrSegment(QrSegment.Mode.ECI, 0, bb) # Tests whether the given string can be encoded as a segment in numeric mode. # A string is encodable iff each character is in the range 0 to 9. @staticmethod def is_numeric(text: str) -> bool: return QrSegment._NUMERIC_REGEX.fullmatch(text) is not None # Tests whether the given string can be encoded as a segment in alphanumeric mode. # A string is encodable iff each character is in the following set: 0 to 9, A to Z # (uppercase only), space, dollar, percent, asterisk, plus, hyphen, period, slash, colon. @staticmethod def is_alphanumeric(text: str) -> bool: return QrSegment._ALPHANUMERIC_REGEX.fullmatch(text) is not None # ---- Private fields ---- # The mode indicator of this segment. Accessed through get_mode(). _mode: QrSegment.Mode # The length of this segment's unencoded data. Measured in characters for # numeric/alphanumeric/kanji mode, bytes for byte mode, and 0 for ECI mode. # Always zero or positive. Not the same as the data's bit length. # Accessed through get_num_chars(). _numchars: int # The data bits of this segment. Accessed through get_data(). _bitdata: List[int] # ---- Constructor (low level) ---- def __init__(self, mode: QrSegment.Mode, numch: int, bitdata: Sequence[int]) -> None: """Creates a new QR Code segment with the given attributes and data. The character count (numch) must agree with the mode and the bit buffer length, but the constraint isn't checked. The given bit buffer is cloned and stored.""" if numch < 0: raise ValueError() self._mode = mode self._numchars = numch self._bitdata = list(bitdata) # Make defensive copy # ---- Accessor methods ---- def get_mode(self) -> QrSegment.Mode: """Returns the mode field of this segment.""" return self._mode def get_num_chars(self) -> int: """Returns the character count field of this segment.""" return self._numchars def get_data(self) -> List[int]: """Returns a new copy of the data bits of this segment.""" return list(self._bitdata) # Make defensive copy # Package-private function @staticmethod def get_total_bits(segs: Sequence[QrSegment], version: int) -> Optional[int]: """Calculates the number of bits needed to encode the given segments at the given version. Returns a non-negative number if successful. Otherwise returns None if a segment has too many characters to fit its length field.""" result = 0 for seg in segs: ccbits: int = seg.get_mode().num_char_count_bits(version) if seg.get_num_chars() >= (1 << ccbits): return None # The segment's length doesn't fit the field's bit width result += 4 + ccbits + len(seg._bitdata) return result # ---- Constants ---- # Describes precisely all strings that are encodable in numeric mode. _NUMERIC_REGEX: Pattern[str] = re.compile(r"[0-9]*") # Describes precisely all strings that are encodable in alphanumeric mode. _ALPHANUMERIC_REGEX: Pattern[str] = re.compile(r"[A-Z0-9 $%*+./:-]*") # Dictionary of "0"->0, "A"->10, "$"->37, etc. _ALPHANUMERIC_ENCODING_TABLE: Dict[str,int] = {ch: i for (i, ch) in enumerate("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ $%*+-./:")} # ---- Public helper enumeration ---- class Mode: """Describes how a segment's data bits are interpreted. Immutable.""" _modebits: int # The mode indicator bits, which is a uint4 value (range 0 to 15) _charcounts: Tuple[int,int,int] # Number of character count bits for three different version ranges # Private constructor def __init__(self, modebits: int, charcounts: Tuple[int,int,int]): self._modebits = modebits self._charcounts = charcounts # Package-private method def get_mode_bits(self) -> int: """Returns an unsigned 4-bit integer value (range 0 to 15) representing the mode indicator bits for this mode object.""" return self._modebits # Package-private method def num_char_count_bits(self, ver: int) -> int: """Returns the bit width of the character count field for a segment in this mode in a QR Code at the given version number. The result is in the range [0, 16].""" return self._charcounts[(ver + 7) // 17] # Placeholders NUMERIC : QrSegment.Mode ALPHANUMERIC: QrSegment.Mode BYTE : QrSegment.Mode KANJI : QrSegment.Mode ECI : QrSegment.Mode # Public constants. Create them outside the class. Mode.NUMERIC = Mode(0x1, (10, 12, 14)) Mode.ALPHANUMERIC = Mode(0x2, ( 9, 11, 13)) Mode.BYTE = Mode(0x4, ( 8, 16, 16)) Mode.KANJI = Mode(0x8, ( 8, 10, 12)) Mode.ECI = Mode(0x7, ( 0, 0, 0)) # ---- Private helper class ---- class _BitBuffer(List[int]): """An appendable sequence of bits (0s and 1s). Mainly used by QrSegment.""" def append_bits(self, val: int, n: int) -> None: """Appends the given number of low-order bits of the given value to this buffer. Requires n >= 0 and 0 <= val < 2^n.""" if (n < 0) or (val >> n != 0): raise ValueError("Value out of range") self.extend(((val >> i) & 1) for i in reversed(range(n))) def _get_bit(x: int, i: int) -> bool: """Returns true iff the i'th bit of x is set to 1.""" return (x >> i) & 1 != 0 class DataTooLongError(ValueError): """Raised when the supplied data does not fit any QR Code version. Ways to handle this exception include: - Decrease the error correction level if it was greater than Ecc.LOW. - If the encode_segments() function was called with a maxversion argument, then increase it if it was less than QrCode.MAX_VERSION. (This advice does not apply to the other factory functions because they search all versions up to QrCode.MAX_VERSION.) - Split the text data into better or optimal segments in order to reduce the number of bits required. - Change the text or binary data to be shorter. - Change the text to fit the character set of a particular segment mode (e.g. alphanumeric). - Propagate the error upward to the caller/user.""" pass