/* * QR Code generator library (JavaScript) * * Copyright (c) 2016 Project Nayuki * https://www.nayuki.io/page/qr-code-generator-library * * (MIT License) * Permission is hereby granted, free of charge, to any person obtaining a copy of * this software and associated documentation files (the "Software"), to deal in * the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of * the Software, and to permit persons to whom the Software is furnished to do so, * subject to the following conditions: * - The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * - The Software is provided "as is", without warranty of any kind, express or * implied, including but not limited to the warranties of merchantability, * fitness for a particular purpose and noninfringement. In no event shall the * authors or copyright holders be liable for any claim, damages or other * liability, whether in an action of contract, tort or otherwise, arising from, * out of or in connection with the Software or the use or other dealings in the * Software. */ "use strict"; /* * Module "qrcodegen". Public members inside this namespace: * - Function encodeText(str text, Ecc ecl) -> QrCode * - Function encodeTextToSegment(str text) -> QrSegment * - Function encodeBinary(list data, Ecc ecl) -> QrCode * - Function encodeSegments(list segs, Ecc ecl) -> QrCode * - Class QrCode: * - Constructor QrCode(QrCode qr, int mask) * - Constructor QrCode(list bytes, int mask, int version, Ecc ecl) * - Method getVersion() -> int * - Method getSize() -> int * - Method getErrorCorrectionLevel() -> Ecc * - Method getMask() -> int * - Method getModule(int x, int y) -> int * - Method isFunctionModule(int x, int y) -> bool * - Method toSvgString(int border) -> str * - Enum Ecc: * - Constants LOW, MEDIUM, QUARTILE, HIGH * - Fields int ordinal, formatBits * - Class QrSegment: * - Function makeBytes(list data) -> QrSegment * - Function makeNumeric(str data) -> QrSegment * - Function makeAlphanumeric(str data) -> QrSegment * - Constructor QrSegment(Mode mode, int numChars, list bitData) * - Method getMode() -> Mode * - Method getNumChars() -> int * - Method getBits() -> list * - Enum Mode: * - Constants NUMERIC, ALPHANUMERIC, BYTE, KANJI * - Method getModeBits() -> int * - Method numCharCountBits(int ver) -> int */ var qrcodegen = new function() { /*---- Public static factory functions for QrCode ----*/ /* * Returns a QR Code symbol representing the given Unicode text string at the given error correction level. * As a conservative upper bound, this function is guaranteed to succeed for strings that have 738 or fewer Unicode * code points (not UTF-16 code units). The smallest possible QR Code version is automatically chosen for the output. */ this.encodeText = function(text, ecl) { var seg = this.encodeTextToSegment(text); return this.encodeSegments([seg], ecl); }; /* * Returns a single QR segment representing the given Unicode text string. */ this.encodeTextToSegment = function(text) { // Select the most efficient segment encoding automatically if (QrSegment.NUMERIC_REGEX.test(text)) return this.QrSegment.makeNumeric(text); else if (QrSegment.ALPHANUMERIC_REGEX.test(text)) return this.QrSegment.makeAlphanumeric(text); else return this.QrSegment.makeBytes(toUtf8ByteArray(text)); }; /* * Returns a QR Code symbol representing the given binary data string at the given error correction level. * This function always encodes using the binary segment mode, not any text mode. The maximum number of * bytes allowed is 2953. The smallest possible QR Code version is automatically chosen for the output. */ this.encodeBinary = function(data, ecl) { var seg = this.QrSegment.makeBytes(data); return this.encodeSegments([seg], ecl); }; /* * Returns a QR Code symbol representing the given data segments at the given error * correction level. The smallest possible QR Code version is automatically chosen for the output. * This function allows the user to create a custom sequence of segments that switches * between modes (such as alphanumeric and binary) to encode text more efficiently. This * function is considered to be lower level than simply encoding text or binary data. */ this.encodeSegments = function(segs, ecl) { // Find the minimal version number to use var version, dataCapacityBits; outer: for (version = 1; ; version++) { // Increment until the data fits in the QR Code if (version > 40) // All versions could not fit the given data throw "Data too long"; dataCapacityBits = QrCode.getNumDataCodewords(version, ecl) * 8; // Number of data bits available // Calculate the total number of bits needed at this version number // to encode all the segments (i.e. segment metadata and payloads) var dataUsedBits = 0; for (var i = 0; i < segs.length; i++) { var seg = segs[i]; if (seg.numChars < 0) throw "Assertion error"; var ccbits = seg.getMode().numCharCountBits(version); if (seg.getNumChars() >= (1 << ccbits)) { // Segment length value doesn't fit in the length field's bit-width, so fail immediately continue outer; } dataUsedBits += 4 + ccbits + seg.getBits().length; } if (dataUsedBits <= dataCapacityBits) break; // This version number is found to be suitable } // Create the data bit string by concatenating all segments var bb = new BitBuffer(); segs.forEach(function(seg) { bb.appendBits(seg.getMode().getModeBits(), 4); bb.appendBits(seg.getNumChars(), seg.getMode().numCharCountBits(version)); bb.appendData(seg); }); // Add terminator and pad up to a byte if applicable bb.appendBits(0, Math.min(4, dataCapacityBits - bb.bitLength())); bb.appendBits(0, (8 - bb.bitLength() % 8) % 8); // Pad with alternate bytes until data capacity is reached for (var padByte = 0xEC; bb.bitLength() < dataCapacityBits; padByte ^= 0xEC ^ 0x11) bb.appendBits(padByte, 8); if (bb.bitLength() % 8 != 0) throw "Assertion error"; // Create the QR Code symbol return new this.QrCode(bb.getBytes(), -1, version, ecl); }; /* * A class that represents an immutable square grid of black and white cells for a QR Code symbol, * with associated static functions to create a QR Code from user-supplied textual or binary data. * This class covers the QR Code model 2 specification, supporting all versions (sizes) * from 1 to 40, all 4 error correction levels, and only 3 character encoding modes. * * This constructor can be called in one of two ways: * - new QrCode(bytes, mask, version, errCorLvl): * Creates a new QR Code symbol with the given version number, error correction level, binary data array, * and mask number. This cumbersome constructor can be invoked directly by the user, but is considered * to be even lower level than qrcodegen.encodeSegments(). * - new QrCode(qr, mask): * Creates a new QR Code symbol based on the given existing object, but with a potentially different * mask pattern. The version, error correction level, codewords, etc. of the newly created object are * all identical to the argument object; only the mask may differ. * In both cases, mask = -1 is for automatic choice or 0 to 7 for fixed choice. */ this.QrCode = function(initData, mask, version, errCorLvl) { /*-- Constructor --*/ // Handle simple scalar fields if (mask < -1 || mask > 7) throw "Mask value out of range"; var size; if (initData instanceof Array) { if (version < 1 || version > 40) throw "Version value out of range"; size = version * 4 + 17; } else if (initData instanceof qrcodegen.QrCode) { version = initData.getVersion(); size = initData.getSize(); errCorLvl = initData.getErrorCorrectionLevel(); } else throw "Invalid initial data"; // Initialize both grids to be size*size arrays of Boolean false var row = []; for (var i = 0; i < size; i++) row.push(false); var modules = []; var isFunction = []; for (var i = 0; i < size; i++) { modules.push(row.slice()); isFunction.push(row.slice()); } // Handle grid fields if (initData instanceof Array) { // Draw function patterns, draw all codewords, do masking drawFunctionPatterns(); var allCodewords = appendErrorCorrection(initData); drawCodewords(allCodewords); } else if (initData instanceof qrcodegen.QrCode) { for (var y = 0; y < size; y++) { for (var x = 0; x < size; x++) { modules[y][x] = initData.getModule(x, y) == 1; isFunction[y][x] = initData.isFunctionModule(x, y); } } applyMask(initData.getMask()); // Undo old mask } else throw "Invalid initial data"; // Handle masking if (mask == -1) { // Automatically choose best mask var minPenalty = Infinity; for (var i = 0; i < 8; i++) { drawFormatBits(i); applyMask(i); var penalty = getPenaltyScore(); if (penalty < minPenalty) { mask = i; minPenalty = penalty; } applyMask(i); // Undoes the mask due to XOR } } if (mask < 0 || mask > 7) throw "Assertion error"; drawFormatBits(mask); // Overwrite old format bits applyMask(mask); // Apply the final choice of mask /*-- Accessor methods --*/ // Returns this QR Code symbol's version number, which is always between 1 and 40 (inclusive). this.getVersion = function() { return version; }; // Returns the width and height of this QR Code symbol, measured in modules. // Always equal to version * 4 + 17, in the range 21 to 177. this.getSize = function() { return size; }; // Returns the error correction level used in this QR Code symbol. this.getErrorCorrectionLevel = function() { return errCorLvl; }; // Returns the mask pattern used in this QR Code symbol, in the range 0 to 7 (i.e. unsigned 3-bit integer). // Note that even if a constructor was called with automatic masking requested // (mask = -1), the resulting object will still have a mask value between 0 and 7. this.getMask = function() { return mask; }; // Returns the color of the module (pixel) at the given coordinates, which is either 0 for white or 1 for black. The top // left corner has the coordinates (x=0, y=0). If the given coordinates are out of bounds, then 0 (white) is returned. this.getModule = function(x, y) { if (x < 0 || x >= size || y < 0 || y >= size) return 0; // Infinite white border else return modules[y][x] ? 1 : 0; }; // Tests whether the module at the given coordinates is a function module (true) or not (false). The top left // corner has the coordinates (x=0, y=0). If the given coordinates are out of bounds, then false is returned. this.isFunctionModule = function(x, y) { if (x < 0 || x >= size || y < 0 || y >= size) return false; // Infinite border else return isFunction[y][x]; }; /*-- Public instance methods --*/ // Based on the given number of border modules to add as padding, this returns a // string whose contents represents an SVG XML file that depicts this QR Code symbol. this.toSvgString = function(border) { if (border < 0) throw "Border must be non-negative"; var result = "\n"; result += "\n"; result += "\n"; result += "\t\n"; result += "\n"; return result; }; /*-- Private helper methods for constructor: Drawing function modules --*/ function drawFunctionPatterns() { // Draw the horizontal and vertical timing patterns for (var i = 0; i < size; i++) { setFunctionModule(6, i, i % 2 == 0); setFunctionModule(i, 6, i % 2 == 0); } // Draw 3 finder patterns (all corners except bottom right; overwrites some timing modules) drawFinderPattern(3, 3); drawFinderPattern(size - 4, 3); drawFinderPattern(3, size - 4); // Draw the numerous alignment patterns var alignPatPos = QrCode.getAlignmentPatternPositions(version); var numAlign = alignPatPos.length; for (var i = 0; i < numAlign; i++) { for (var j = 0; j < numAlign; j++) { if (i == 0 && j == 0 || i == 0 && j == numAlign - 1 || i == numAlign - 1 && j == 0) continue; // Skip the three finder corners else drawAlignmentPattern(alignPatPos[i], alignPatPos[j]); } } // Draw configuration data drawFormatBits(0); // Dummy mask value; overwritten later in the constructor drawVersion(); } // Draws two copies of the format bits (with its own error correction code) // based on this object's error correction level and mask fields. function drawFormatBits(mask) { // Calculate error correction code and pack bits var data = errCorLvl.formatBits << 3 | mask; // errCorrLvl is uint2, mask is uint3 var rem = data; for (var i = 0; i < 10; i++) rem = (rem << 1) ^ ((rem >>> 9) * 0x537); data = data << 10 | rem; data ^= 0x5412; // uint15 if ((data & ((1 << 15) - 1)) != data) throw "Assertion error"; // Draw first copy for (var i = 0; i <= 5; i++) setFunctionModule(8, i, ((data >>> i) & 1) != 0); setFunctionModule(8, 7, ((data >>> 6) & 1) != 0); setFunctionModule(8, 8, ((data >>> 7) & 1) != 0); setFunctionModule(7, 8, ((data >>> 8) & 1) != 0); for (var i = 9; i < 15; i++) setFunctionModule(14 - i, 8, ((data >>> i) & 1) != 0); // Draw second copy for (var i = 0; i <= 7; i++) setFunctionModule(size - 1 - i, 8, ((data >>> i) & 1) != 0); for (var i = 8; i < 15; i++) setFunctionModule(8, size - 15 + i, ((data >>> i) & 1) != 0); setFunctionModule(8, size - 8, true); } // Draws two copies of the version bits (with its own error correction code), // based on this object's version field (which only has an effect for 7 <= version <= 40). function drawVersion() { if (version < 7) return; // Calculate error correction code and pack bits var rem = version; // version is uint6, in the range [7, 40] for (var i = 0; i < 12; i++) rem = (rem << 1) ^ ((rem >>> 11) * 0x1F25); var data = version << 12 | rem; // uint18 if ((data & ((1 << 18) - 1)) != data) throw "Assertion error"; // Draw two copies for (var i = 0; i < 18; i++) { var bit = ((data >>> i) & 1) != 0; var a = size - 11 + i % 3; var b = Math.floor(i / 3); setFunctionModule(a, b, bit); setFunctionModule(b, a, bit); } } // Draws a 9*9 finder pattern including the border separator, with the center module at (x, y). function drawFinderPattern(x, y) { for (var i = -4; i <= 4; i++) { for (var j = -4; j <= 4; j++) { var dist = Math.max(Math.abs(i), Math.abs(j)); // Chebyshev/infinity norm var xx = x + j; var yy = y + i; if (0 <= xx && xx < size && 0 <= yy && yy < size) setFunctionModule(xx, yy, dist != 2 && dist != 4); } } } // Draws a 5*5 alignment pattern, with the center module at (x, y). function drawAlignmentPattern(x, y) { for (var i = -2; i <= 2; i++) { for (var j = -2; j <= 2; j++) setFunctionModule(x + j, y + i, Math.max(Math.abs(i), Math.abs(j)) != 1); } } // Sets the color of a module and marks it as a function module. // Only used by the constructor. Coordinates must be in range. function setFunctionModule(x, y, isBlack) { modules[y][x] = isBlack; isFunction[y][x] = true; } /*---- Private helper methods for constructor: Codewords and masking ----*/ // Returns a new byte string representing the given data with the appropriate error correction // codewords appended to it, based on this object's version and error correction level. function appendErrorCorrection(data) { if (data.length != QrCode.getNumDataCodewords(version, errCorLvl)) throw "Invalid argument"; var numBlocks = QrCode.NUM_ERROR_CORRECTION_BLOCKS[errCorLvl.ordinal][version]; var numEcc = QrCode.NUM_ERROR_CORRECTION_CODEWORDS[errCorLvl.ordinal][version]; if (numEcc % numBlocks != 0) throw "Assertion error"; var eccLen = Math.floor(numEcc / numBlocks); var numShortBlocks = numBlocks - Math.floor(QrCode.getNumRawDataModules(version) / 8) % numBlocks; var shortBlockLen = Math.floor(QrCode.getNumRawDataModules(version) / (numBlocks * 8)); var blocks = []; var rs = new ReedSolomonGenerator(eccLen); for (var i = 0, k = 0; i < numBlocks; i++) { var dat = data.slice(k, k + shortBlockLen - eccLen + (i < numShortBlocks ? 0 : 1)); k += dat.length; var ecc = rs.getRemainder(dat); if (i < numShortBlocks) dat.push(0); ecc.forEach(function(b) { dat.push(b); }); blocks.push(dat); } var result = []; for (var i = 0; i < blocks[0].length; i++) { for (var j = 0; j < blocks.length; j++) { if (i != shortBlockLen - eccLen || j >= numShortBlocks) result.push(blocks[j][i]); } } if (result.length != Math.floor(QrCode.getNumRawDataModules(version) / 8)) throw "Assertion error"; return result; } // Draws the given sequence of 8-bit codewords (data and error correction) onto the entire // data area of this QR Code symbol. Function modules need to be marked off before this is called. function drawCodewords(data) { if (data.length != Math.floor(QrCode.getNumRawDataModules(version) / 8)) throw "Invalid argument"; var i = 0; // Bit index into the data // Do the funny zigzag scan for (var right = size - 1; right >= 1; right -= 2) { // Index of right column in each column pair if (right == 6) right = 5; for (var vert = 0; vert < size; vert++) { // Vertical counter for (var j = 0; j < 2; j++) { var x = right - j; // Actual x coordinate var upwards = ((right & 2) == 0) ^ (x < 6); var y = upwards ? size - 1 - vert : vert; // Actual y coordinate if (!isFunction[y][x] && i < data.length * 8) { modules[y][x] = (data[i >>> 3] >>> (7 - (i & 7)) & 1) != 0; i++; } } } } if (i != data.length * 8) throw "Assertion error"; } // XORs the data modules in this QR Code with the given mask pattern. Due to XOR's mathematical // properties, calling applyMask(m) twice with the same value is equivalent to no change at all. // This means it is possible to apply a mask, undo it, and try another mask. Note that a final // well-formed QR Code symbol needs exactly one mask applied (not zero, not two, etc.). function applyMask(mask) { if (mask < 0 || mask > 7) throw "Mask value out of range"; for (var y = 0; y < size; y++) { for (var x = 0; x < size; x++) { var invert; switch (mask) { case 0: invert = (x + y) % 2 == 0; break; case 1: invert = y % 2 == 0; break; case 2: invert = x % 3 == 0; break; case 3: invert = (x + y) % 3 == 0; break; case 4: invert = (Math.floor(x / 3) + Math.floor(y / 2)) % 2 == 0; break; case 5: invert = x * y % 2 + x * y % 3 == 0; break; case 6: invert = (x * y % 2 + x * y % 3) % 2 == 0; break; case 7: invert = ((x + y) % 2 + x * y % 3) % 2 == 0; break; default: throw "Assertion error"; } modules[y][x] ^= invert & !isFunction[y][x]; } } } // Calculates and returns the penalty score based on state of this QR Code's current modules. // This is used by the automatic mask choice algorithm to find the mask pattern that yields the lowest score. function getPenaltyScore() { var result = 0; // Adjacent modules in row having same color for (var y = 0; y < size; y++) { var colorX = modules[y][0]; for (var x = 1, runX = 1; x < size; x++) { if (modules[y][x] != colorX) { colorX = modules[y][x]; runX = 1; } else { runX++; if (runX == 5) result += QrCode.PENALTY_N1; else if (runX > 5) result++; } } } // Adjacent modules in column having same color for (var x = 0; x < size; x++) { var colorY = modules[0][x]; for (var y = 1, runY = 1; y < size; y++) { if (modules[y][x] != colorY) { colorY = modules[y][x]; runY = 1; } else { runY++; if (runY == 5) result += QrCode.PENALTY_N1; else if (runY > 5) result++; } } } // 2*2 blocks of modules having same color for (var y = 0; y < size - 1; y++) { for (var x = 0; x < size - 1; x++) { var color = modules[y][x]; if ( color == modules[y][x + 1] && color == modules[y + 1][x] && color == modules[y + 1][x + 1]) result += QrCode.PENALTY_N2; } } // Finder-like pattern in rows for (var y = 0; y < size; y++) { for (var x = 0, bits = 0; x < size; x++) { bits = ((bits << 1) & 0x7FF) | (modules[y][x] ? 1 : 0); if (x >= 10 && (bits == 0x05D || bits == 0x5D0)) // Needs 11 bits accumulated result += QrCode.PENALTY_N3; } } // Finder-like pattern in columns for (var x = 0; x < size; x++) { for (var y = 0, bits = 0; y < size; y++) { bits = ((bits << 1) & 0x7FF) | (modules[y][x] ? 1 : 0); if (y >= 10 && (bits == 0x05D || bits == 0x5D0)) // Needs 11 bits accumulated result += QrCode.PENALTY_N3; } } // Balance of black and white modules var black = 0; modules.forEach(function(row) { row.forEach(function(color) { if (color) black++; }); }); var total = size * size; // Find smallest k such that (45-5k)% <= dark/total <= (55+5k)% for (var k = 0; black*20 < (9-k)*total || black*20 > (11+k)*total; k++) result += QrCode.PENALTY_N4; return result; } }; /*---- Private static helper functions ----*/ var QrCode = {}; // Private object to assign properties to // Returns a set of positions of the alignment patterns in ascending order. These positions are // used on both the x and y axes. Each value in the resulting array is in the range [0, 177). // This stateless pure function could be implemented as table of 40 variable-length lists of unsigned bytes. QrCode.getAlignmentPatternPositions = function(ver) { if (ver < 1 || ver > 40) throw "Version number out of range"; else if (ver == 1) return []; else { var size = ver * 4 + 17; var numAlign = Math.floor(ver / 7) + 2; var step; if (ver != 32) step = Math.ceil((size - 13) / (2 * numAlign - 2)) * 2; else // C-C-C-Combo breaker! step = 26; var result = []; for (var i = numAlign - 1, pos = size - 7; i >= 1; i--, pos -= step) result.push(pos); result.push(6); result.reverse(); return result; } }; // Returns the number of raw data modules (bits) available at the given version number. // These data modules are used for both user data codewords and error correction codewords. // This stateless pure function could be implemented as a 40-entry lookup table. QrCode.getNumRawDataModules = function(ver) { if (ver < 1 || ver > 40) throw "Version number out of range"; var result = (16 * ver + 128) * ver + 64; if (ver >= 2) { var numAlign = Math.floor(ver / 7) + 2; result -= (25 * numAlign - 10) * numAlign - 55; if (ver >= 7) result -= 18 * 2; // Subtract version information } return result; }; // Returns the number of 8-bit data (i.e. not error correction) codewords contained in any // QR Code of the given version number and error correction level, with remainder bits discarded. // This stateless pure function could be implemented as a (40*4)-cell lookup table. QrCode.getNumDataCodewords = function(ver, ecl) { return Math.floor(QrCode.getNumRawDataModules(ver) / 8) - QrCode.NUM_ERROR_CORRECTION_CODEWORDS[ecl.ordinal][ver]; }; /*---- Tables of constants ----*/ // For use in getPenaltyScore(), when evaluating which mask is best. QrCode.PENALTY_N1 = 3; QrCode.PENALTY_N2 = 3; QrCode.PENALTY_N3 = 40; QrCode.PENALTY_N4 = 10; QrCode.NUM_ERROR_CORRECTION_CODEWORDS = [ // Version: (note that index 0 is for padding, and is set to an illegal value) // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 Error correction level [null, 7, 10, 15, 20, 26, 36, 40, 48, 60, 72, 80, 96, 104, 120, 132, 144, 168, 180, 196, 224, 224, 252, 270, 300, 312, 336, 360, 390, 420, 450, 480, 510, 540, 570, 570, 600, 630, 660, 720, 750], // Low [null, 10, 16, 26, 36, 48, 64, 72, 88, 110, 130, 150, 176, 198, 216, 240, 280, 308, 338, 364, 416, 442, 476, 504, 560, 588, 644, 700, 728, 784, 812, 868, 924, 980, 1036, 1064, 1120, 1204, 1260, 1316, 1372], // Medium [null, 13, 22, 36, 52, 72, 96, 108, 132, 160, 192, 224, 260, 288, 320, 360, 408, 448, 504, 546, 600, 644, 690, 750, 810, 870, 952, 1020, 1050, 1140, 1200, 1290, 1350, 1440, 1530, 1590, 1680, 1770, 1860, 1950, 2040], // Quartile [null, 17, 28, 44, 64, 88, 112, 130, 156, 192, 224, 264, 308, 352, 384, 432, 480, 532, 588, 650, 700, 750, 816, 900, 960, 1050, 1110, 1200, 1260, 1350, 1440, 1530, 1620, 1710, 1800, 1890, 1980, 2100, 2220, 2310, 2430], // High ]; QrCode.NUM_ERROR_CORRECTION_BLOCKS = [ // Version: (note that index 0 is for padding, and is set to an illegal value) // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 Error correction level [null, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 4, 4, 4, 6, 6, 6, 6, 7, 8, 8, 9, 9, 10, 12, 12, 12, 13, 14, 15, 16, 17, 18, 19, 19, 20, 21, 22, 24, 25], // Low [null, 1, 1, 1, 2, 2, 4, 4, 4, 5, 5, 5, 8, 9, 9, 10, 10, 11, 13, 14, 16, 17, 17, 18, 20, 21, 23, 25, 26, 28, 29, 31, 33, 35, 37, 38, 40, 43, 45, 47, 49], // Medium [null, 1, 1, 2, 2, 4, 4, 6, 6, 8, 8, 8, 10, 12, 16, 12, 17, 16, 18, 21, 20, 23, 23, 25, 27, 29, 34, 34, 35, 38, 40, 43, 45, 48, 51, 53, 56, 59, 62, 65, 68], // Quartile [null, 1, 1, 2, 4, 4, 4, 5, 6, 8, 8, 11, 11, 16, 16, 18, 16, 19, 21, 25, 25, 25, 34, 30, 32, 35, 37, 40, 42, 45, 48, 51, 54, 57, 60, 63, 66, 70, 74, 77, 81], // High ]; /* * A public helper enumeration that represents the error correction level used in a QR Code symbol. * The fields 'ordinal' and 'formatBits' are in the range 0 to 3 (unsigned 2-bit integer). */ this.QrCode.Ecc = { // Constants declared in ascending order of error protection LOW : {ordinal: 0, formatBits: 1}, MEDIUM : {ordinal: 1, formatBits: 0}, QUARTILE: {ordinal: 2, formatBits: 3}, HIGH : {ordinal: 3, formatBits: 2}, }; /* * A public class that represents a character string to be encoded in a QR Code symbol. * Each segment has a mode, and a sequence of characters that is already encoded as * a sequence of bits. Instances of this class are immutable. * This segment class imposes no length restrictions, but QR Codes have restrictions. * Even in the most favorable conditions, a QR Code can only hold 7089 characters of data. * Any segment longer than this is meaningless for the purpose of generating QR Codes. */ this.QrSegment = function(mode, numChars, bitData) { /*-- Accessor methods --*/ this.getMode = function() { return mode; }; this.getNumChars = function() { return numChars; }; this.getBits = function() { return bitData.slice(); }; }; /*-- Static factory functions --*/ // Returns a segment representing the given binary data encoded in byte mode. this.QrSegment.makeBytes = function(data) { var bb = new BitBuffer(); data.forEach(function(b) { bb.appendBits(b, 8); }); return new this(this.Mode.BYTE, data.length, bb.getBits()); }; // Returns a segment representing the given string of decimal digits encoded in numeric mode. this.QrSegment.makeNumeric = function(digits) { if (!QrSegment.NUMERIC_REGEX.test(digits)) throw "String contains non-numeric characters"; var bb = new BitBuffer(); var i; for (i = 0; i + 3 <= digits.length; i += 3) // Process groups of 3 bb.appendBits(parseInt(digits.substr(i, 3), 10), 10); var rem = digits.length - i; if (rem > 0) // 1 or 2 digits remaining bb.appendBits(parseInt(digits.substring(i), 10), rem * 3 + 1); return new this(this.Mode.NUMERIC, digits.length, bb.getBits()); }; // Returns a segment representing the given text string encoded in alphanumeric mode. The characters allowed are: // 0 to 9, A to Z (uppercase only), space, dollar, percent, asterisk, plus, hyphen, period, slash, colon. this.QrSegment.makeAlphanumeric = function(text) { if (!QrSegment.ALPHANUMERIC_REGEX.test(text)) throw "String contains unencodable characters in alphanumeric mode"; var bb = new BitBuffer(); var i; for (i = 0; i + 2 <= text.length; i += 2) { // Process groups of 2 var temp = QrSegment.ALPHANUMERIC_ENCODING_TABLE[text.charCodeAt(i) - 32] * 45; temp += QrSegment.ALPHANUMERIC_ENCODING_TABLE[text.charCodeAt(i + 1) - 32]; bb.appendBits(temp, 11); } if (i < text.length) // 1 character remaining bb.appendBits(QrSegment.ALPHANUMERIC_ENCODING_TABLE[text.charCodeAt(i) - 32], 6); return new this(this.Mode.ALPHANUMERIC, text.length, bb.getBits()); }; /*-- Constants --*/ var QrSegment = {}; // Private object to assign properties to // Can test whether a string is encodable in numeric mode (such as by using QrSegment.makeNumeric()). QrSegment.NUMERIC_REGEX = /^[0-9]*$/; // Can test whether a string is encodable in alphanumeric mode (such as by using QrSegment.makeAlphanumeric()). QrSegment.ALPHANUMERIC_REGEX = /^[A-Z0-9 $%*+.\/:-]*$/; QrSegment.ALPHANUMERIC_ENCODING_TABLE = [ // SP, !, ", #, $, %, &, ', (, ), *, +, ,, -, ., /, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, :, ;, <, =, >, ?, @, // ASCII codes 32 to 64 36, -1, -1, -1, 37, 38, -1, -1, -1, -1, 39, 40, -1, 41, 42, 43, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 44, -1, -1, -1, -1, -1, -1, // Array indices 0 to 32 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, // Array indices 33 to 58 // A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, // ASCII codes 65 to 90 ]; /* * A public helper enumeration that represents the mode field of a segment. * Objects are immutable. Provides methods to retrieve closely related values. */ this.QrSegment.Mode = { // Constants NUMERIC : new Mode(0x1, [10, 12, 14]), ALPHANUMERIC: new Mode(0x2, [ 9, 11, 13]), BYTE : new Mode(0x4, [ 8, 16, 16]), KANJI : new Mode(0x8, [ 8, 10, 12]), }; // Private constructor for the enum. function Mode(mode, ccbits) { // Returns an unsigned 4-bit integer value (range 0 to 15) representing the mode indicator bits for this mode object. this.getModeBits = function() { return mode; }; // Returns the bit width of the segment character count field for this mode object at the given version number. this.numCharCountBits = function(ver) { if ( 1 <= ver && ver <= 9) return ccbits[0]; else if (10 <= ver && ver <= 26) return ccbits[1]; else if (27 <= ver && ver <= 40) return ccbits[2]; else throw "Version number out of range"; }; } /*---- Private helper functions and classes ----*/ // Returns a new array of bytes representing the given string encoded in UTF-8. function toUtf8ByteArray(str) { var result = []; for (var i = 0; i < str.length; i++) { var c = str.charCodeAt(i); if (c < 0x80) result.push(c); else if (c < 0x800) { result.push(0xC0 | ((c >>> 6) & 0x1F)); result.push(0x80 | ((c >>> 0) & 0x3F)); } else if (0xD800 <= c && c < 0xDC00) { // High surrogate i++; if (i < str.length) { var d = str.charCodeAt(i); if (0xDC00 <= d && d < 0xE000) { // Low surrogate c = ((c & 0x3FF) << 10 | (d & 0x3FF)) + 0x10000; result.push(0xF0 | ((c >>> 18) & 0x07)); result.push(0x80 | ((c >>> 12) & 0x3F)); result.push(0x80 | ((c >>> 6) & 0x3F)); result.push(0x80 | ((c >>> 0) & 0x3F)); continue; } } throw "Invalid UTF-16 string"; } else if (0xDC00 <= c && c < 0xE000) // Low surrogate throw "Invalid UTF-16 string"; else if (c < 0x10000) { result.push(0xE0 | ((c >>> 12) & 0x0F)); result.push(0x80 | ((c >>> 6) & 0x3F)); result.push(0x80 | ((c >>> 0) & 0x3F)); } else throw "Assertion error"; } return result; } /* * A private helper class that computes the Reed-Solomon error correction codewords for a sequence of * data codewords at a given degree. Objects are immutable, and the state only depends on the degree. * This class exists because the divisor polynomial does not need to be recalculated for every input. * This constructor creates a Reed-Solomon ECC generator for the given degree. This could be implemented * as a lookup table over all possible parameter values, instead of as an algorithm. */ function ReedSolomonGenerator(degree) { if (degree < 1 || degree > 255) throw "Degree out of range"; // Coefficients of the divisor polynomial, stored from highest to lowest power, excluding the leading term which // is always 1. For example the polynomial x^3 + 255x^2 + 8x + 93 is stored as the uint8 array {255, 8, 93}. var coefficients = []; // Start with the monomial x^0 for (var i = 0; i < degree - 1; i++) coefficients.push(0); coefficients.push(1); // Compute the product polynomial (x - r^0) * (x - r^1) * (x - r^2) * ... * (x - r^{degree-1}), // drop the highest term, and store the rest of the coefficients in order of descending powers. // Note that r = 0x02, which is a generator element of this field GF(2^8/0x11D). var root = 1; for (var i = 0; i < degree; i++) { // Multiply the current product by (x - r^i) for (var j = 0; j < coefficients.length; j++) { coefficients[j] = ReedSolomonGenerator.multiply(coefficients[j], root); if (j + 1 < coefficients.length) coefficients[j] ^= coefficients[j + 1]; } root = (root << 1) ^ ((root >>> 7) * 0x11D); // Multiply by 0x02 mod GF(2^8/0x11D) } // Computes and returns the Reed-Solomon error correction codewords for the given sequence of data codewords. // The returned object is always a new byte array. This method does not alter this object's state (because it is immutable). this.getRemainder = function(data) { // Compute the remainder by performing polynomial division var result = coefficients.map(function() { return 0; }); data.forEach(function(b) { var factor = b ^ result[0]; result.shift(); result.push(0); for (var j = 0; j < result.length; j++) result[j] ^= ReedSolomonGenerator.multiply(coefficients[j], factor); }); return result; }; } // This static function returns the product of the two given field elements modulo GF(2^8/0x11D). The arguments and // result are unsigned 8-bit integers. This could be implemented as a lookup table of 256*256 entries of uint8. ReedSolomonGenerator.multiply = function(x, y) { if ((x & 0xFF) != x || (y & 0xFF) != y) throw "Byte out of range"; // Russian peasant multiplication var z = 0; for (var i = 7; i >= 0; i--) { z = (z << 1) ^ ((z >>> 7) * 0x11D); z ^= ((y >>> i) & 1) * x; } if ((z & 0xFF) != z) throw "Assertion error"; return z; }; /* * A private helper class that represents an appendable sequence of bits. * This constructor creates an empty bit buffer (length 0). */ function BitBuffer() { // Array of bits; each item is the integer 0 or 1 var bitData = []; /*-- Methods --*/ // Returns the number of bits in the buffer, which is a non-negative value. this.bitLength = function() { return bitData.length; }; // Returns a copy of all bits. this.getBits = function() { return bitData.slice(); }; // Returns a copy of all bytes, padding up to the nearest byte. this.getBytes = function() { var result = []; var numBytes = Math.ceil(bitData.length / 8); for (var i = 0; i < numBytes; i++) result.push(0); bitData.forEach(function(bit, i) { result[i >>> 3] |= bit << (7 - (i & 7)); }); return result; }; // Appends the given number of bits of the given value to this sequence. // If 0 <= len <= 31, then this requires 0 <= val < 2^len. this.appendBits = function(val, len) { if (len < 0 || len > 32 || len < 32 && (val & ((1 << len) - 1)) != val) throw "Value out of range"; for (var i = len - 1; i >= 0; i--) // Append bit by bit bitData.push((val >>> i) & 1); }; // Appends the bit data of the given segment to this bit buffer. this.appendData = function(seg) { seg.getBits().forEach(function(b) { // Append bit by bit bitData.push(b); }); }; } };