/* * QR Code generator library (TypeScript) * * Copyright (c) Project Nayuki. (MIT License) * https://www.nayuki.io/page/qr-code-generator-library * * Permission is hereby granted, free of charge, to any person obtaining a copy of * this software and associated documentation files (the "Software"), to deal in * the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of * the Software, and to permit persons to whom the Software is furnished to do so, * subject to the following conditions: * - The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * - The Software is provided "as is", without warranty of any kind, express or * implied, including but not limited to the warranties of merchantability, * fitness for a particular purpose and noninfringement. In no event shall the * authors or copyright holders be liable for any claim, damages or other * liability, whether in an action of contract, tort or otherwise, arising from, * out of or in connection with the Software or the use or other dealings in the * Software. */ "use strict"; namespace qrcodegen { type bit = number; type byte = number; type int = number; /*---- QR Code symbol class ----*/ /* * A QR Code symbol, which is a type of two-dimension barcode. * Invented by Denso Wave and described in the ISO/IEC 18004 standard. * Instances of this class represent an immutable square grid of dark and light cells. * The class provides static factory functions to create a QR Code from text or binary data. * The class covers the QR Code Model 2 specification, supporting all versions (sizes) * from 1 to 40, all 4 error correction levels, and 4 character encoding modes. * * Ways to create a QR Code object: * - High level: Take the payload data and call QrCode.encodeText() or QrCode.encodeBinary(). * - Mid level: Custom-make the list of segments and call QrCode.encodeSegments(). * - Low level: Custom-make the array of data codeword bytes (including * segment headers and final padding, excluding error correction codewords), * supply the appropriate version number, and call the QrCode() constructor. * (Note that all ways require supplying the desired error correction level.) */ export class QrCode { /*-- Static factory functions (high level) --*/ // Returns a QR Code representing the given Unicode text string at the given error correction level. // As a conservative upper bound, this function is guaranteed to succeed for strings that have 738 or fewer // Unicode code points (not UTF-16 code units) if the low error correction level is used. The smallest possible // QR Code version is automatically chosen for the output. The ECC level of the result may be higher than the // ecl argument if it can be done without increasing the version. public static encodeText(text: string, ecl: QrCode.Ecc): QrCode { const segs: Array = qrcodegen.QrSegment.makeSegments(text); return QrCode.encodeSegments(segs, ecl); } // Returns a QR Code representing the given binary data at the given error correction level. // This function always encodes using the binary segment mode, not any text mode. The maximum number of // bytes allowed is 2953. The smallest possible QR Code version is automatically chosen for the output. // The ECC level of the result may be higher than the ecl argument if it can be done without increasing the version. public static encodeBinary(data: Readonly>, ecl: QrCode.Ecc): QrCode { const seg: QrSegment = qrcodegen.QrSegment.makeBytes(data); return QrCode.encodeSegments([seg], ecl); } /*-- Static factory functions (mid level) --*/ // Returns a QR Code representing the given segments with the given encoding parameters. // The smallest possible QR Code version within the given range is automatically // chosen for the output. Iff boostEcl is true, then the ECC level of the result // may be higher than the ecl argument if it can be done without increasing the // version. The mask number is either between 0 to 7 (inclusive) to force that // mask, or -1 to automatically choose an appropriate mask (which may be slow). // This function allows the user to create a custom sequence of segments that switches // between modes (such as alphanumeric and byte) to encode text in less space. // This is a mid-level API; the high-level API is encodeText() and encodeBinary(). public static encodeSegments(segs: Readonly>, ecl: QrCode.Ecc, minVersion: int = 1, maxVersion: int = 40, mask: int = -1, boostEcl: boolean = true): QrCode { if (!(QrCode.MIN_VERSION <= minVersion && minVersion <= maxVersion && maxVersion <= QrCode.MAX_VERSION) || mask < -1 || mask > 7) throw "Invalid value"; // Find the minimal version number to use let version: int; let dataUsedBits: int; for (version = minVersion; ; version++) { const dataCapacityBits: int = QrCode.getNumDataCodewords(version, ecl) * 8; // Number of data bits available const usedBits: number = QrSegment.getTotalBits(segs, version); if (usedBits <= dataCapacityBits) { dataUsedBits = usedBits; break; // This version number is found to be suitable } if (version >= maxVersion) // All versions in the range could not fit the given data throw "Data too long"; } // Increase the error correction level while the data still fits in the current version number for (const newEcl of [QrCode.Ecc.MEDIUM, QrCode.Ecc.QUARTILE, QrCode.Ecc.HIGH]) { // From low to high if (boostEcl && dataUsedBits <= QrCode.getNumDataCodewords(version, newEcl) * 8) ecl = newEcl; } // Concatenate all segments to create the data bit string let bb: Array = [] for (const seg of segs) { appendBits(seg.mode.modeBits, 4, bb); appendBits(seg.numChars, seg.mode.numCharCountBits(version), bb); for (const b of seg.getData()) bb.push(b); } assert(bb.length == dataUsedBits); // Add terminator and pad up to a byte if applicable const dataCapacityBits: int = QrCode.getNumDataCodewords(version, ecl) * 8; assert(bb.length <= dataCapacityBits); appendBits(0, Math.min(4, dataCapacityBits - bb.length), bb); appendBits(0, (8 - bb.length % 8) % 8, bb); assert(bb.length % 8 == 0); // Pad with alternating bytes until data capacity is reached for (let padByte = 0xEC; bb.length < dataCapacityBits; padByte ^= 0xEC ^ 0x11) appendBits(padByte, 8, bb); // Pack bits into bytes in big endian let dataCodewords: Array = []; while (dataCodewords.length * 8 < bb.length) dataCodewords.push(0); bb.forEach((b: bit, i: int) => dataCodewords[i >>> 3] |= b << (7 - (i & 7))); // Create the QR Code object return new QrCode(version, ecl, dataCodewords, mask); } /*-- Fields --*/ // The width and height of this QR Code, measured in modules, between // 21 and 177 (inclusive). This is equal to version * 4 + 17. public readonly size: int; // The index of the mask pattern used in this QR Code, which is between 0 and 7 (inclusive). // Even if a QR Code is created with automatic masking requested (mask = -1), // the resulting object still has a mask value between 0 and 7. public readonly mask: int; // The modules of this QR Code (false = light, true = dark). // Immutable after constructor finishes. Accessed through getModule(). private readonly modules : Array> = []; // Indicates function modules that are not subjected to masking. Discarded when constructor finishes. private readonly isFunction: Array> = []; /*-- Constructor (low level) and fields --*/ // Creates a new QR Code with the given version number, // error correction level, data codeword bytes, and mask number. // This is a low-level API that most users should not use directly. // A mid-level API is the encodeSegments() function. public constructor( // The version number of this QR Code, which is between 1 and 40 (inclusive). // This determines the size of this barcode. public readonly version: int, // The error correction level used in this QR Code. public readonly errorCorrectionLevel: QrCode.Ecc, dataCodewords: Readonly>, msk: int) { // Check scalar arguments if (version < QrCode.MIN_VERSION || version > QrCode.MAX_VERSION) throw "Version value out of range"; if (msk < -1 || msk > 7) throw "Mask value out of range"; this.size = version * 4 + 17; // Initialize both grids to be size*size arrays of Boolean false let row: Array = []; for (let i = 0; i < this.size; i++) row.push(false); for (let i = 0; i < this.size; i++) { this.modules .push(row.slice()); // Initially all light this.isFunction.push(row.slice()); } // Compute ECC, draw modules this.drawFunctionPatterns(); const allCodewords: Array = this.addEccAndInterleave(dataCodewords); this.drawCodewords(allCodewords); // Do masking if (msk == -1) { // Automatically choose best mask let minPenalty: int = 1000000000; for (let i = 0; i < 8; i++) { this.applyMask(i); this.drawFormatBits(i); const penalty: int = this.getPenaltyScore(); if (penalty < minPenalty) { msk = i; minPenalty = penalty; } this.applyMask(i); // Undoes the mask due to XOR } } assert(0 <= msk && msk <= 7); this.mask = msk; this.applyMask(msk); // Apply the final choice of mask this.drawFormatBits(msk); // Overwrite old format bits this.isFunction = []; } /*-- Accessor methods --*/ // Returns the color of the module (pixel) at the given coordinates, which is false // for light or true for dark. The top left corner has the coordinates (x=0, y=0). // If the given coordinates are out of bounds, then false (light) is returned. public getModule(x: int, y: int): boolean { return 0 <= x && x < this.size && 0 <= y && y < this.size && this.modules[y][x]; } /*-- Private helper methods for constructor: Drawing function modules --*/ // Reads this object's version field, and draws and marks all function modules. private drawFunctionPatterns(): void { // Draw horizontal and vertical timing patterns for (let i = 0; i < this.size; i++) { this.setFunctionModule(6, i, i % 2 == 0); this.setFunctionModule(i, 6, i % 2 == 0); } // Draw 3 finder patterns (all corners except bottom right; overwrites some timing modules) this.drawFinderPattern(3, 3); this.drawFinderPattern(this.size - 4, 3); this.drawFinderPattern(3, this.size - 4); // Draw numerous alignment patterns const alignPatPos: Array = this.getAlignmentPatternPositions(); const numAlign: int = alignPatPos.length; for (let i = 0; i < numAlign; i++) { for (let j = 0; j < numAlign; j++) { // Don't draw on the three finder corners if (!(i == 0 && j == 0 || i == 0 && j == numAlign - 1 || i == numAlign - 1 && j == 0)) this.drawAlignmentPattern(alignPatPos[i], alignPatPos[j]); } } // Draw configuration data this.drawFormatBits(0); // Dummy mask value; overwritten later in the constructor this.drawVersion(); } // Draws two copies of the format bits (with its own error correction code) // based on the given mask and this object's error correction level field. private drawFormatBits(mask: int): void { // Calculate error correction code and pack bits const data: int = this.errorCorrectionLevel.formatBits << 3 | mask; // errCorrLvl is uint2, mask is uint3 let rem: int = data; for (let i = 0; i < 10; i++) rem = (rem << 1) ^ ((rem >>> 9) * 0x537); const bits = (data << 10 | rem) ^ 0x5412; // uint15 assert(bits >>> 15 == 0); // Draw first copy for (let i = 0; i <= 5; i++) this.setFunctionModule(8, i, getBit(bits, i)); this.setFunctionModule(8, 7, getBit(bits, 6)); this.setFunctionModule(8, 8, getBit(bits, 7)); this.setFunctionModule(7, 8, getBit(bits, 8)); for (let i = 9; i < 15; i++) this.setFunctionModule(14 - i, 8, getBit(bits, i)); // Draw second copy for (let i = 0; i < 8; i++) this.setFunctionModule(this.size - 1 - i, 8, getBit(bits, i)); for (let i = 8; i < 15; i++) this.setFunctionModule(8, this.size - 15 + i, getBit(bits, i)); this.setFunctionModule(8, this.size - 8, true); // Always dark } // Draws two copies of the version bits (with its own error correction code), // based on this object's version field, iff 7 <= version <= 40. private drawVersion(): void { if (this.version < 7) return; // Calculate error correction code and pack bits let rem: int = this.version; // version is uint6, in the range [7, 40] for (let i = 0; i < 12; i++) rem = (rem << 1) ^ ((rem >>> 11) * 0x1F25); const bits: int = this.version << 12 | rem; // uint18 assert(bits >>> 18 == 0); // Draw two copies for (let i = 0; i < 18; i++) { const color: boolean = getBit(bits, i); const a: int = this.size - 11 + i % 3; const b: int = Math.floor(i / 3); this.setFunctionModule(a, b, color); this.setFunctionModule(b, a, color); } } // Draws a 9*9 finder pattern including the border separator, // with the center module at (x, y). Modules can be out of bounds. private drawFinderPattern(x: int, y: int): void { for (let dy = -4; dy <= 4; dy++) { for (let dx = -4; dx <= 4; dx++) { const dist: int = Math.max(Math.abs(dx), Math.abs(dy)); // Chebyshev/infinity norm const xx: int = x + dx; const yy: int = y + dy; if (0 <= xx && xx < this.size && 0 <= yy && yy < this.size) this.setFunctionModule(xx, yy, dist != 2 && dist != 4); } } } // Draws a 5*5 alignment pattern, with the center module // at (x, y). All modules must be in bounds. private drawAlignmentPattern(x: int, y: int): void { for (let dy = -2; dy <= 2; dy++) { for (let dx = -2; dx <= 2; dx++) this.setFunctionModule(x + dx, y + dy, Math.max(Math.abs(dx), Math.abs(dy)) != 1); } } // Sets the color of a module and marks it as a function module. // Only used by the constructor. Coordinates must be in bounds. private setFunctionModule(x: int, y: int, isDark: boolean): void { this.modules[y][x] = isDark; this.isFunction[y][x] = true; } /*-- Private helper methods for constructor: Codewords and masking --*/ // Returns a new byte string representing the given data with the appropriate error correction // codewords appended to it, based on this object's version and error correction level. private addEccAndInterleave(data: Readonly>): Array { const ver: int = this.version; const ecl: QrCode.Ecc = this.errorCorrectionLevel; if (data.length != QrCode.getNumDataCodewords(ver, ecl)) throw "Invalid argument"; // Calculate parameter numbers const numBlocks: int = QrCode.NUM_ERROR_CORRECTION_BLOCKS[ecl.ordinal][ver]; const blockEccLen: int = QrCode.ECC_CODEWORDS_PER_BLOCK [ecl.ordinal][ver]; const rawCodewords: int = Math.floor(QrCode.getNumRawDataModules(ver) / 8); const numShortBlocks: int = numBlocks - rawCodewords % numBlocks; const shortBlockLen: int = Math.floor(rawCodewords / numBlocks); // Split data into blocks and append ECC to each block let blocks: Array> = []; const rsDiv: Array = QrCode.reedSolomonComputeDivisor(blockEccLen); for (let i = 0, k = 0; i < numBlocks; i++) { let dat: Array = data.slice(k, k + shortBlockLen - blockEccLen + (i < numShortBlocks ? 0 : 1)); k += dat.length; const ecc: Array = QrCode.reedSolomonComputeRemainder(dat, rsDiv); if (i < numShortBlocks) dat.push(0); blocks.push(dat.concat(ecc)); } // Interleave (not concatenate) the bytes from every block into a single sequence let result: Array = []; for (let i = 0; i < blocks[0].length; i++) { blocks.forEach((block, j) => { // Skip the padding byte in short blocks if (i != shortBlockLen - blockEccLen || j >= numShortBlocks) result.push(block[i]); }); } assert(result.length == rawCodewords); return result; } // Draws the given sequence of 8-bit codewords (data and error correction) onto the entire // data area of this QR Code. Function modules need to be marked off before this is called. private drawCodewords(data: Readonly>): void { if (data.length != Math.floor(QrCode.getNumRawDataModules(this.version) / 8)) throw "Invalid argument"; let i: int = 0; // Bit index into the data // Do the funny zigzag scan for (let right = this.size - 1; right >= 1; right -= 2) { // Index of right column in each column pair if (right == 6) right = 5; for (let vert = 0; vert < this.size; vert++) { // Vertical counter for (let j = 0; j < 2; j++) { const x: int = right - j; // Actual x coordinate const upward: boolean = ((right + 1) & 2) == 0; const y: int = upward ? this.size - 1 - vert : vert; // Actual y coordinate if (!this.isFunction[y][x] && i < data.length * 8) { this.modules[y][x] = getBit(data[i >>> 3], 7 - (i & 7)); i++; } // If this QR Code has any remainder bits (0 to 7), they were assigned as // 0/false/light by the constructor and are left unchanged by this method } } } assert(i == data.length * 8); } // XORs the codeword modules in this QR Code with the given mask pattern. // The function modules must be marked and the codeword bits must be drawn // before masking. Due to the arithmetic of XOR, calling applyMask() with // the same mask value a second time will undo the mask. A final well-formed // QR Code needs exactly one (not zero, two, etc.) mask applied. private applyMask(mask: int): void { if (mask < 0 || mask > 7) throw "Mask value out of range"; for (let y = 0; y < this.size; y++) { for (let x = 0; x < this.size; x++) { let invert: boolean; switch (mask) { case 0: invert = (x + y) % 2 == 0; break; case 1: invert = y % 2 == 0; break; case 2: invert = x % 3 == 0; break; case 3: invert = (x + y) % 3 == 0; break; case 4: invert = (Math.floor(x / 3) + Math.floor(y / 2)) % 2 == 0; break; case 5: invert = x * y % 2 + x * y % 3 == 0; break; case 6: invert = (x * y % 2 + x * y % 3) % 2 == 0; break; case 7: invert = ((x + y) % 2 + x * y % 3) % 2 == 0; break; default: throw "Unreachable"; } if (!this.isFunction[y][x] && invert) this.modules[y][x] = !this.modules[y][x]; } } } // Calculates and returns the penalty score based on state of this QR Code's current modules. // This is used by the automatic mask choice algorithm to find the mask pattern that yields the lowest score. private getPenaltyScore(): int { let result: int = 0; // Adjacent modules in row having same color, and finder-like patterns for (let y = 0; y < this.size; y++) { let runColor = false; let runX = 0; let runHistory = [0,0,0,0,0,0,0]; for (let x = 0; x < this.size; x++) { if (this.modules[y][x] == runColor) { runX++; if (runX == 5) result += QrCode.PENALTY_N1; else if (runX > 5) result++; } else { this.finderPenaltyAddHistory(runX, runHistory); if (!runColor) result += this.finderPenaltyCountPatterns(runHistory) * QrCode.PENALTY_N3; runColor = this.modules[y][x]; runX = 1; } } result += this.finderPenaltyTerminateAndCount(runColor, runX, runHistory) * QrCode.PENALTY_N3; } // Adjacent modules in column having same color, and finder-like patterns for (let x = 0; x < this.size; x++) { let runColor = false; let runY = 0; let runHistory = [0,0,0,0,0,0,0]; for (let y = 0; y < this.size; y++) { if (this.modules[y][x] == runColor) { runY++; if (runY == 5) result += QrCode.PENALTY_N1; else if (runY > 5) result++; } else { this.finderPenaltyAddHistory(runY, runHistory); if (!runColor) result += this.finderPenaltyCountPatterns(runHistory) * QrCode.PENALTY_N3; runColor = this.modules[y][x]; runY = 1; } } result += this.finderPenaltyTerminateAndCount(runColor, runY, runHistory) * QrCode.PENALTY_N3; } // 2*2 blocks of modules having same color for (let y = 0; y < this.size - 1; y++) { for (let x = 0; x < this.size - 1; x++) { const color: boolean = this.modules[y][x]; if ( color == this.modules[y][x + 1] && color == this.modules[y + 1][x] && color == this.modules[y + 1][x + 1]) result += QrCode.PENALTY_N2; } } // Balance of dark and light modules let dark: int = 0; for (const row of this.modules) dark = row.reduce((sum, color) => sum + (color ? 1 : 0), dark); const total: int = this.size * this.size; // Note that size is odd, so dark/total != 1/2 // Compute the smallest integer k >= 0 such that (45-5k)% <= dark/total <= (55+5k)% const k: int = Math.ceil(Math.abs(dark * 20 - total * 10) / total) - 1; assert(0 <= k && k <= 9); result += k * QrCode.PENALTY_N4; assert(0 <= result && result <= 2568888); // Non-tight upper bound based on default values of PENALTY_N1, ..., N4 return result; } /*-- Private helper functions --*/ // Returns an ascending list of positions of alignment patterns for this version number. // Each position is in the range [0,177), and are used on both the x and y axes. // This could be implemented as lookup table of 40 variable-length lists of integers. private getAlignmentPatternPositions(): Array { if (this.version == 1) return []; else { const numAlign: int = Math.floor(this.version / 7) + 2; const step: int = (this.version == 32) ? 26 : Math.ceil((this.version * 4 + 4) / (numAlign * 2 - 2)) * 2; let result: Array = [6]; for (let pos = this.size - 7; result.length < numAlign; pos -= step) result.splice(1, 0, pos); return result; } } // Returns the number of data bits that can be stored in a QR Code of the given version number, after // all function modules are excluded. This includes remainder bits, so it might not be a multiple of 8. // The result is in the range [208, 29648]. This could be implemented as a 40-entry lookup table. private static getNumRawDataModules(ver: int): int { if (ver < QrCode.MIN_VERSION || ver > QrCode.MAX_VERSION) throw "Version number out of range"; let result: int = (16 * ver + 128) * ver + 64; if (ver >= 2) { const numAlign: int = Math.floor(ver / 7) + 2; result -= (25 * numAlign - 10) * numAlign - 55; if (ver >= 7) result -= 36; } assert(208 <= result && result <= 29648); return result; } // Returns the number of 8-bit data (i.e. not error correction) codewords contained in any // QR Code of the given version number and error correction level, with remainder bits discarded. // This stateless pure function could be implemented as a (40*4)-cell lookup table. private static getNumDataCodewords(ver: int, ecl: QrCode.Ecc): int { return Math.floor(QrCode.getNumRawDataModules(ver) / 8) - QrCode.ECC_CODEWORDS_PER_BLOCK [ecl.ordinal][ver] * QrCode.NUM_ERROR_CORRECTION_BLOCKS[ecl.ordinal][ver]; } // Returns a Reed-Solomon ECC generator polynomial for the given degree. This could be // implemented as a lookup table over all possible parameter values, instead of as an algorithm. private static reedSolomonComputeDivisor(degree: int): Array { if (degree < 1 || degree > 255) throw "Degree out of range"; // Polynomial coefficients are stored from highest to lowest power, excluding the leading term which is always 1. // For example the polynomial x^3 + 255x^2 + 8x + 93 is stored as the uint8 array [255, 8, 93]. let result: Array = []; for (let i = 0; i < degree - 1; i++) result.push(0); result.push(1); // Start off with the monomial x^0 // Compute the product polynomial (x - r^0) * (x - r^1) * (x - r^2) * ... * (x - r^{degree-1}), // and drop the highest monomial term which is always 1x^degree. // Note that r = 0x02, which is a generator element of this field GF(2^8/0x11D). let root = 1; for (let i = 0; i < degree; i++) { // Multiply the current product by (x - r^i) for (let j = 0; j < result.length; j++) { result[j] = QrCode.reedSolomonMultiply(result[j], root); if (j + 1 < result.length) result[j] ^= result[j + 1]; } root = QrCode.reedSolomonMultiply(root, 0x02); } return result; } // Returns the Reed-Solomon error correction codeword for the given data and divisor polynomials. private static reedSolomonComputeRemainder(data: Readonly>, divisor: Readonly>): Array { let result: Array = divisor.map(_ => 0); for (const b of data) { // Polynomial division const factor: byte = b ^ (result.shift() as byte); result.push(0); divisor.forEach((coef, i) => result[i] ^= QrCode.reedSolomonMultiply(coef, factor)); } return result; } // Returns the product of the two given field elements modulo GF(2^8/0x11D). The arguments and result // are unsigned 8-bit integers. This could be implemented as a lookup table of 256*256 entries of uint8. private static reedSolomonMultiply(x: byte, y: byte): byte { if (x >>> 8 != 0 || y >>> 8 != 0) throw "Byte out of range"; // Russian peasant multiplication let z: int = 0; for (let i = 7; i >= 0; i--) { z = (z << 1) ^ ((z >>> 7) * 0x11D); z ^= ((y >>> i) & 1) * x; } assert(z >>> 8 == 0); return z as byte; } // Can only be called immediately after a light run is added, and // returns either 0, 1, or 2. A helper function for getPenaltyScore(). private finderPenaltyCountPatterns(runHistory: Readonly>): int { const n: int = runHistory[1]; assert(n <= this.size * 3); const core: boolean = n > 0 && runHistory[2] == n && runHistory[3] == n * 3 && runHistory[4] == n && runHistory[5] == n; return (core && runHistory[0] >= n * 4 && runHistory[6] >= n ? 1 : 0) + (core && runHistory[6] >= n * 4 && runHistory[0] >= n ? 1 : 0); } // Must be called at the end of a line (row or column) of modules. A helper function for getPenaltyScore(). private finderPenaltyTerminateAndCount(currentRunColor: boolean, currentRunLength: int, runHistory: Array): int { if (currentRunColor) { // Terminate dark run this.finderPenaltyAddHistory(currentRunLength, runHistory); currentRunLength = 0; } currentRunLength += this.size; // Add light border to final run this.finderPenaltyAddHistory(currentRunLength, runHistory); return this.finderPenaltyCountPatterns(runHistory); } // Pushes the given value to the front and drops the last value. A helper function for getPenaltyScore(). private finderPenaltyAddHistory(currentRunLength: int, runHistory: Array): void { if (runHistory[0] == 0) currentRunLength += this.size; // Add light border to initial run runHistory.pop(); runHistory.unshift(currentRunLength); } /*-- Constants and tables --*/ // The minimum version number supported in the QR Code Model 2 standard. public static readonly MIN_VERSION: int = 1; // The maximum version number supported in the QR Code Model 2 standard. public static readonly MAX_VERSION: int = 40; // For use in getPenaltyScore(), when evaluating which mask is best. private static readonly PENALTY_N1: int = 3; private static readonly PENALTY_N2: int = 3; private static readonly PENALTY_N3: int = 40; private static readonly PENALTY_N4: int = 10; private static readonly ECC_CODEWORDS_PER_BLOCK: Array> = [ // Version: (note that index 0 is for padding, and is set to an illegal value) //0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 Error correction level [-1, 7, 10, 15, 20, 26, 18, 20, 24, 30, 18, 20, 24, 26, 30, 22, 24, 28, 30, 28, 28, 28, 28, 30, 30, 26, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30], // Low [-1, 10, 16, 26, 18, 24, 16, 18, 22, 22, 26, 30, 22, 22, 24, 24, 28, 28, 26, 26, 26, 26, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28], // Medium [-1, 13, 22, 18, 26, 18, 24, 18, 22, 20, 24, 28, 26, 24, 20, 30, 24, 28, 28, 26, 30, 28, 30, 30, 30, 30, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30], // Quartile [-1, 17, 28, 22, 16, 22, 28, 26, 26, 24, 28, 24, 28, 22, 24, 24, 30, 28, 28, 26, 28, 30, 24, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30], // High ]; private static readonly NUM_ERROR_CORRECTION_BLOCKS: Array> = [ // Version: (note that index 0 is for padding, and is set to an illegal value) //0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 Error correction level [-1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 4, 4, 4, 6, 6, 6, 6, 7, 8, 8, 9, 9, 10, 12, 12, 12, 13, 14, 15, 16, 17, 18, 19, 19, 20, 21, 22, 24, 25], // Low [-1, 1, 1, 1, 2, 2, 4, 4, 4, 5, 5, 5, 8, 9, 9, 10, 10, 11, 13, 14, 16, 17, 17, 18, 20, 21, 23, 25, 26, 28, 29, 31, 33, 35, 37, 38, 40, 43, 45, 47, 49], // Medium [-1, 1, 1, 2, 2, 4, 4, 6, 6, 8, 8, 8, 10, 12, 16, 12, 17, 16, 18, 21, 20, 23, 23, 25, 27, 29, 34, 34, 35, 38, 40, 43, 45, 48, 51, 53, 56, 59, 62, 65, 68], // Quartile [-1, 1, 1, 2, 4, 4, 4, 5, 6, 8, 8, 11, 11, 16, 16, 18, 16, 19, 21, 25, 25, 25, 34, 30, 32, 35, 37, 40, 42, 45, 48, 51, 54, 57, 60, 63, 66, 70, 74, 77, 81], // High ]; } // Appends the given number of low-order bits of the given value // to the given buffer. Requires 0 <= len <= 31 and 0 <= val < 2^len. function appendBits(val: int, len: int, bb: Array): void { if (len < 0 || len > 31 || val >>> len != 0) throw "Value out of range"; for (let i = len - 1; i >= 0; i--) // Append bit by bit bb.push((val >>> i) & 1); } // Returns true iff the i'th bit of x is set to 1. function getBit(x: int, i: int): boolean { return ((x >>> i) & 1) != 0; } // Throws an exception if the given condition is false. function assert(cond: boolean): void { if (!cond) throw "Assertion error"; } /*---- Data segment class ----*/ /* * A segment of character/binary/control data in a QR Code symbol. * Instances of this class are immutable. * The mid-level way to create a segment is to take the payload data * and call a static factory function such as QrSegment.makeNumeric(). * The low-level way to create a segment is to custom-make the bit buffer * and call the QrSegment() constructor with appropriate values. * This segment class imposes no length restrictions, but QR Codes have restrictions. * Even in the most favorable conditions, a QR Code can only hold 7089 characters of data. * Any segment longer than this is meaningless for the purpose of generating QR Codes. */ export class QrSegment { /*-- Static factory functions (mid level) --*/ // Returns a segment representing the given binary data encoded in // byte mode. All input byte arrays are acceptable. Any text string // can be converted to UTF-8 bytes and encoded as a byte mode segment. public static makeBytes(data: Readonly>): QrSegment { let bb: Array = [] for (const b of data) appendBits(b, 8, bb); return new QrSegment(QrSegment.Mode.BYTE, data.length, bb); } // Returns a segment representing the given string of decimal digits encoded in numeric mode. public static makeNumeric(digits: string): QrSegment { if (!QrSegment.isNumeric(digits)) throw "String contains non-numeric characters"; let bb: Array = [] for (let i = 0; i < digits.length; ) { // Consume up to 3 digits per iteration const n: int = Math.min(digits.length - i, 3); appendBits(parseInt(digits.substr(i, n), 10), n * 3 + 1, bb); i += n; } return new QrSegment(QrSegment.Mode.NUMERIC, digits.length, bb); } // Returns a segment representing the given text string encoded in alphanumeric mode. // The characters allowed are: 0 to 9, A to Z (uppercase only), space, // dollar, percent, asterisk, plus, hyphen, period, slash, colon. public static makeAlphanumeric(text: string): QrSegment { if (!QrSegment.isAlphanumeric(text)) throw "String contains unencodable characters in alphanumeric mode"; let bb: Array = [] let i: int; for (i = 0; i + 2 <= text.length; i += 2) { // Process groups of 2 let temp: int = QrSegment.ALPHANUMERIC_CHARSET.indexOf(text.charAt(i)) * 45; temp += QrSegment.ALPHANUMERIC_CHARSET.indexOf(text.charAt(i + 1)); appendBits(temp, 11, bb); } if (i < text.length) // 1 character remaining appendBits(QrSegment.ALPHANUMERIC_CHARSET.indexOf(text.charAt(i)), 6, bb); return new QrSegment(QrSegment.Mode.ALPHANUMERIC, text.length, bb); } // Returns a new mutable list of zero or more segments to represent the given Unicode text string. // The result may use various segment modes and switch modes to optimize the length of the bit stream. public static makeSegments(text: string): Array { // Select the most efficient segment encoding automatically if (text == "") return []; else if (QrSegment.isNumeric(text)) return [QrSegment.makeNumeric(text)]; else if (QrSegment.isAlphanumeric(text)) return [QrSegment.makeAlphanumeric(text)]; else return [QrSegment.makeBytes(QrSegment.toUtf8ByteArray(text))]; } // Returns a segment representing an Extended Channel Interpretation // (ECI) designator with the given assignment value. public static makeEci(assignVal: int): QrSegment { let bb: Array = [] if (assignVal < 0) throw "ECI assignment value out of range"; else if (assignVal < (1 << 7)) appendBits(assignVal, 8, bb); else if (assignVal < (1 << 14)) { appendBits(0b10, 2, bb); appendBits(assignVal, 14, bb); } else if (assignVal < 1000000) { appendBits(0b110, 3, bb); appendBits(assignVal, 21, bb); } else throw "ECI assignment value out of range"; return new QrSegment(QrSegment.Mode.ECI, 0, bb); } // Tests whether the given string can be encoded as a segment in numeric mode. // A string is encodable iff each character is in the range 0 to 9. public static isNumeric(text: string): boolean { return QrSegment.NUMERIC_REGEX.test(text); } // Tests whether the given string can be encoded as a segment in alphanumeric mode. // A string is encodable iff each character is in the following set: 0 to 9, A to Z // (uppercase only), space, dollar, percent, asterisk, plus, hyphen, period, slash, colon. public static isAlphanumeric(text: string): boolean { return QrSegment.ALPHANUMERIC_REGEX.test(text); } /*-- Constructor (low level) and fields --*/ // Creates a new QR Code segment with the given attributes and data. // The character count (numChars) must agree with the mode and the bit buffer length, // but the constraint isn't checked. The given bit buffer is cloned and stored. public constructor( // The mode indicator of this segment. public readonly mode: QrSegment.Mode, // The length of this segment's unencoded data. Measured in characters for // numeric/alphanumeric/kanji mode, bytes for byte mode, and 0 for ECI mode. // Always zero or positive. Not the same as the data's bit length. public readonly numChars: int, // The data bits of this segment. Accessed through getData(). private readonly bitData: Array) { if (numChars < 0) throw "Invalid argument"; this.bitData = bitData.slice(); // Make defensive copy } /*-- Methods --*/ // Returns a new copy of the data bits of this segment. public getData(): Array { return this.bitData.slice(); // Make defensive copy } // (Package-private) Calculates and returns the number of bits needed to encode the given segments at // the given version. The result is infinity if a segment has too many characters to fit its length field. public static getTotalBits(segs: Readonly>, version: int): number { let result: number = 0; for (const seg of segs) { const ccbits: int = seg.mode.numCharCountBits(version); if (seg.numChars >= (1 << ccbits)) return Infinity; // The segment's length doesn't fit the field's bit width result += 4 + ccbits + seg.bitData.length; } return result; } // Returns a new array of bytes representing the given string encoded in UTF-8. private static toUtf8ByteArray(str: string): Array { str = encodeURI(str); let result: Array = []; for (let i = 0; i < str.length; i++) { if (str.charAt(i) != "%") result.push(str.charCodeAt(i)); else { result.push(parseInt(str.substr(i + 1, 2), 16)); i += 2; } } return result; } /*-- Constants --*/ // Describes precisely all strings that are encodable in numeric mode. private static readonly NUMERIC_REGEX: RegExp = /^[0-9]*$/; // Describes precisely all strings that are encodable in alphanumeric mode. private static readonly ALPHANUMERIC_REGEX: RegExp = /^[A-Z0-9 $%*+.\/:-]*$/; // The set of all legal characters in alphanumeric mode, // where each character value maps to the index in the string. private static readonly ALPHANUMERIC_CHARSET: string = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ $%*+-./:"; } } /*---- Public helper enumeration ----*/ namespace qrcodegen.QrCode { type int = number; /* * The error correction level in a QR Code symbol. Immutable. */ export class Ecc { /*-- Constants --*/ public static readonly LOW = new Ecc(0, 1); // The QR Code can tolerate about 7% erroneous codewords public static readonly MEDIUM = new Ecc(1, 0); // The QR Code can tolerate about 15% erroneous codewords public static readonly QUARTILE = new Ecc(2, 3); // The QR Code can tolerate about 25% erroneous codewords public static readonly HIGH = new Ecc(3, 2); // The QR Code can tolerate about 30% erroneous codewords /*-- Constructor and fields --*/ private constructor( // In the range 0 to 3 (unsigned 2-bit integer). public readonly ordinal: int, // (Package-private) In the range 0 to 3 (unsigned 2-bit integer). public readonly formatBits: int) {} } } /*---- Public helper enumeration ----*/ namespace qrcodegen.QrSegment { type int = number; /* * Describes how a segment's data bits are interpreted. Immutable. */ export class Mode { /*-- Constants --*/ public static readonly NUMERIC = new Mode(0x1, [10, 12, 14]); public static readonly ALPHANUMERIC = new Mode(0x2, [ 9, 11, 13]); public static readonly BYTE = new Mode(0x4, [ 8, 16, 16]); public static readonly KANJI = new Mode(0x8, [ 8, 10, 12]); public static readonly ECI = new Mode(0x7, [ 0, 0, 0]); /*-- Constructor and fields --*/ private constructor( // The mode indicator bits, which is a uint4 value (range 0 to 15). public readonly modeBits: int, // Number of character count bits for three different version ranges. private readonly numBitsCharCount: [int,int,int]) {} /*-- Method --*/ // (Package-private) Returns the bit width of the character count field for a segment in // this mode in a QR Code at the given version number. The result is in the range [0, 16]. public numCharCountBits(ver: int): int { return this.numBitsCharCount[Math.floor((ver + 7) / 17)]; } } }