/* * Fast QR Code generator library * * Copyright (c) Project Nayuki. (MIT License) * https://www.nayuki.io/page/fast-qr-code-generator-library * * Permission is hereby granted, free of charge, to any person obtaining a copy of * this software and associated documentation files (the "Software"), to deal in * the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of * the Software, and to permit persons to whom the Software is furnished to do so, * subject to the following conditions: * - The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * - The Software is provided "as is", without warranty of any kind, express or * implied, including but not limited to the warranties of merchantability, * fitness for a particular purpose and noninfringement. In no event shall the * authors or copyright holders be liable for any claim, damages or other * liability, whether in an action of contract, tort or otherwise, arising from, * out of or in connection with the Software or the use or other dealings in the * Software. */ package io.nayuki.fastqrcodegen; import java.util.Arrays; import java.util.Objects; // Computes Reed-Solomon error correction codewords for given data codewords. final class ReedSolomonGenerator { // Use this memoizer to get instances of this class. public static final Memoizer MEMOIZER = new Memoizer<>(ReedSolomonGenerator::new); // A table of size 256 * degree, where polynomialMultiply[i][j] = multiply(i, coefficients[j]). // 'coefficients' is the temporary array computed in the constructor. private byte[][] polynomialMultiply; // Creates a Reed-Solomon ECC generator polynomial for the given degree. private ReedSolomonGenerator(int degree) { if (degree < 1 || degree > 255) throw new IllegalArgumentException("Degree out of range"); // The divisor polynomial, whose coefficients are stored from highest to lowest power. // For example, x^3 + 255x^2 + 8x + 93 is stored as the uint8 array {255, 8, 93}. byte[] coefficients = new byte[degree]; coefficients[degree - 1] = 1; // Start off with the monomial x^0 // Compute the product polynomial (x - r^0) * (x - r^1) * (x - r^2) * ... * (x - r^{degree-1}), // and drop the highest monomial term which is always 1x^degree. // Note that r = 0x02, which is a generator element of this field GF(2^8/0x11D). int root = 1; for (int i = 0; i < degree; i++) { // Multiply the current product by (x - r^i) for (int j = 0; j < coefficients.length; j++) { coefficients[j] = (byte)multiply(coefficients[j] & 0xFF, root); if (j + 1 < coefficients.length) coefficients[j] ^= coefficients[j + 1]; } root = multiply(root, 0x02); } polynomialMultiply = new byte[256][degree]; for (int i = 0; i < polynomialMultiply.length; i++) { for (int j = 0; j < degree; j++) polynomialMultiply[i][j] = (byte)multiply(i, coefficients[j] & 0xFF); } } // Returns the error correction codeword for the given data polynomial and this divisor polynomial. public void getRemainder(byte[] data, int dataOff, int dataLen, byte[] result) { Objects.requireNonNull(data); Objects.requireNonNull(result); int degree = polynomialMultiply[0].length; assert result.length == degree; Arrays.fill(result, (byte)0); for (int i = dataOff, dataEnd = dataOff + dataLen; i < dataEnd; i++) { // Polynomial division byte[] table = polynomialMultiply[(data[i] ^ result[0]) & 0xFF]; for (int j = 0; j < degree - 1; j++) result[j] = (byte)(result[j + 1] ^ table[j]); result[degree - 1] = table[degree - 1]; } } // Returns the product of the two given field elements modulo GF(2^8/0x11D). The arguments and result // are unsigned 8-bit integers. This could be implemented as a lookup table of 256*256 entries of uint8. private static int multiply(int x, int y) { assert x >> 8 == 0 && y >> 8 == 0; // Russian peasant multiplication int z = 0; for (int i = 7; i >= 0; i--) { z = (z << 1) ^ ((z >>> 7) * 0x11D); z ^= ((y >>> i) & 1) * x; } assert z >>> 8 == 0; return z; } }