/* * QR Code generator library (C) * * Copyright (c) Project Nayuki. (MIT License) * https://www.nayuki.io/page/qr-code-generator-library * * Permission is hereby granted, free of charge, to any person obtaining a copy of * this software and associated documentation files (the "Software"), to deal in * the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of * the Software, and to permit persons to whom the Software is furnished to do so, * subject to the following conditions: * - The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * - The Software is provided "as is", without warranty of any kind, express or * implied, including but not limited to the warranties of merchantability, * fitness for a particular purpose and noninfringement. In no event shall the * authors or copyright holders be liable for any claim, damages or other * liability, whether in an action of contract, tort or otherwise, arising from, * out of or in connection with the Software or the use or other dealings in the * Software. */ #include #include #include #include #include "qrcodegen.h" #ifndef QRCODEGEN_TEST #define testable static // Keep functions private #else // Expose private functions #ifndef __cplusplus #define testable #else // Needed for const variables because they are treated as implicitly 'static' in C++ #define testable extern #endif #endif /*---- Forward declarations for private functions ----*/ // Regarding all public and private functions defined in this source file: // - They require all pointer/array arguments to be not null. // - They only read input scalar/array arguments, write to output pointer/array // arguments, and return scalar values; they are "pure" functions. // - They don't read mutable global variables or write to any global variables. // - They don't perform I/O, read the clock, print to console, etc. // - They allocate a small and constant amount of stack memory. // - They don't allocate or free any memory on the heap. // - They don't recurse or mutually recurse. All the code // could be inlined into the top-level public functions. // - They run in at most quadratic time with respect to input arguments. // Most functions run in linear time, and some in constant time. // There are no unbounded loops or non-obvious termination conditions. // - They are completely thread-safe if the caller does not give the // same writable buffer to concurrent calls to these functions. testable int getTextProperties(const char *text, bool *isNumeric, bool *isAlphanumeric, int *textBits); static int fitVersionToData(int minVersion, int maxVersion, enum qrcodegen_Ecc ecl, int dataLen, int dataBitLen, int ver1To9LenBits, int ver10To26LenBits, int ver27To40LenBits); static void encodeQrCodeTail(uint8_t dataAndQrcode[], int bitLen, uint8_t tempBuffer[], int version, enum qrcodegen_Ecc ecl, enum qrcodegen_Mask mask, bool boostEcl); testable void appendBitsToBuffer(unsigned int val, int numBits, uint8_t buffer[], int *bitLen); testable void appendErrorCorrection(uint8_t data[], int version, enum qrcodegen_Ecc ecl, uint8_t result[]); testable int getNumDataCodewords(int version, enum qrcodegen_Ecc ecl); testable int getNumRawDataModules(int version); testable void calcReedSolomonGenerator(int degree, uint8_t result[]); testable void calcReedSolomonRemainder(const uint8_t data[], int dataLen, const uint8_t generator[], int degree, uint8_t result[]); testable uint8_t finiteFieldMultiply(uint8_t x, uint8_t y); testable void initializeFunctionModules(int version, uint8_t qrcode[]); static void drawWhiteFunctionModules(uint8_t qrcode[], int version); static void drawFormatBits(enum qrcodegen_Ecc ecl, enum qrcodegen_Mask mask, uint8_t qrcode[]); testable int getAlignmentPatternPositions(int version, uint8_t result[7]); static void fillRectangle(int left, int top, int width, int height, uint8_t qrcode[]); static void drawCodewords(const uint8_t data[], int dataLen, uint8_t qrcode[]); static void applyMask(const uint8_t functionModules[], uint8_t qrcode[], enum qrcodegen_Mask mask); static long getPenaltyScore(const uint8_t qrcode[]); testable bool getModule(const uint8_t qrcode[], int x, int y); testable void setModule(uint8_t qrcode[], int x, int y, bool isBlack); testable void setModuleBounded(uint8_t qrcode[], int x, int y, bool isBlack); testable int calcSegmentBitLength(enum qrcodegen_Mode mode, size_t numChars); /*---- Private tables of constants ----*/ // For checking text and encoding segments. static const char *ALPHANUMERIC_CHARSET = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ $%*+-./:"; // For generating error correction codes. testable const int8_t ECC_CODEWORDS_PER_BLOCK[4][41] = { // Version: (note that index 0 is for padding, and is set to an illegal value) //0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 Error correction level {-1, 7, 10, 15, 20, 26, 18, 20, 24, 30, 18, 20, 24, 26, 30, 22, 24, 28, 30, 28, 28, 28, 28, 30, 30, 26, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30}, // Low {-1, 10, 16, 26, 18, 24, 16, 18, 22, 22, 26, 30, 22, 22, 24, 24, 28, 28, 26, 26, 26, 26, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28}, // Medium {-1, 13, 22, 18, 26, 18, 24, 18, 22, 20, 24, 28, 26, 24, 20, 30, 24, 28, 28, 26, 30, 28, 30, 30, 30, 30, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30}, // Quartile {-1, 17, 28, 22, 16, 22, 28, 26, 26, 24, 28, 24, 28, 22, 24, 24, 30, 28, 28, 26, 28, 30, 24, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30}, // High }; // For generating error correction codes. testable const int8_t NUM_ERROR_CORRECTION_BLOCKS[4][41] = { // Version: (note that index 0 is for padding, and is set to an illegal value) //0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 Error correction level {-1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 4, 4, 4, 6, 6, 6, 6, 7, 8, 8, 9, 9, 10, 12, 12, 12, 13, 14, 15, 16, 17, 18, 19, 19, 20, 21, 22, 24, 25}, // Low {-1, 1, 1, 1, 2, 2, 4, 4, 4, 5, 5, 5, 8, 9, 9, 10, 10, 11, 13, 14, 16, 17, 17, 18, 20, 21, 23, 25, 26, 28, 29, 31, 33, 35, 37, 38, 40, 43, 45, 47, 49}, // Medium {-1, 1, 1, 2, 2, 4, 4, 6, 6, 8, 8, 8, 10, 12, 16, 12, 17, 16, 18, 21, 20, 23, 23, 25, 27, 29, 34, 34, 35, 38, 40, 43, 45, 48, 51, 53, 56, 59, 62, 65, 68}, // Quartile {-1, 1, 1, 2, 4, 4, 4, 5, 6, 8, 8, 11, 11, 16, 16, 18, 16, 19, 21, 25, 25, 25, 34, 30, 32, 35, 37, 40, 42, 45, 48, 51, 54, 57, 60, 63, 66, 70, 74, 77, 81}, // High }; // For automatic mask pattern selection. static const int PENALTY_N1 = 3; static const int PENALTY_N2 = 3; static const int PENALTY_N3 = 40; static const int PENALTY_N4 = 10; /*---- High-level QR Code encoding functions ----*/ // Public function - see documentation comment in header file. bool qrcodegen_encodeText(const char *text, uint8_t tempBuffer[], uint8_t qrcode[], enum qrcodegen_Ecc ecl, int minVersion, int maxVersion, enum qrcodegen_Mask mask, bool boostEcl) { assert(text != NULL && tempBuffer != NULL && qrcode != NULL); assert(qrcodegen_VERSION_MIN <= minVersion && minVersion <= maxVersion && maxVersion <= qrcodegen_VERSION_MAX); assert(0 <= (int)ecl && (int)ecl <= 3 && -1 <= (int)mask && (int)mask <= 7); // Set size to invalid value for safety qrcode[0] = 0; // Get text properties bool isNumeric, isAlphanumeric; int textBits; int textLen = getTextProperties(text, &isNumeric, &isAlphanumeric, &textBits); if (textLen < 0) return false; if (!isAlphanumeric) { // Fully handle in binary mode if (textLen > qrcodegen_BUFFER_LEN_FOR_VERSION(maxVersion)) return false; for (int i = 0; i < textLen; i++) tempBuffer[i] = (uint8_t)text[i]; return qrcodegen_encodeBinary(tempBuffer, (size_t)textLen, qrcode, ecl, minVersion, maxVersion, mask, boostEcl); } int version = fitVersionToData(minVersion, maxVersion, ecl, textLen, (int)textBits, (isNumeric ? 10 : 9), (isNumeric ? 12 : 11), (isNumeric ? 14 : 13)); if (version == 0) return false; memset(qrcode, 0, qrcodegen_BUFFER_LEN_FOR_VERSION(version) * sizeof(qrcode[0])); int bitLen = 0; // Make segment header and append data if (isNumeric && textLen > 0) { appendBitsToBuffer(1, 4, qrcode, &bitLen); int lengthBits = version <= 9 ? 10 : (version <= 26 ? 12 : 14); appendBitsToBuffer((unsigned int)textLen, lengthBits, qrcode, &bitLen); int accumData = 0; int accumCount = 0; for (const char *p = text; *p != '\0'; p++) { accumData = accumData * 10 + (*p - '0'); accumCount++; if (accumCount == 3) { appendBitsToBuffer(accumData, 10, qrcode, &bitLen); accumData = 0; accumCount = 0; } } if (accumCount > 0) // 1 or 2 digits remaining appendBitsToBuffer(accumData, accumCount * 3 + 1, qrcode, &bitLen); } else if (isAlphanumeric && textLen > 0) { appendBitsToBuffer(2, 4, qrcode, &bitLen); int lengthBits = version <= 9 ? 9 : (version <= 26 ? 11 : 13); appendBitsToBuffer((unsigned int)textLen, lengthBits, qrcode, &bitLen); int accumData = 0; int accumCount = 0; for (const char *p = text; *p != '\0'; p++) { accumData = accumData * 45 + (strchr(ALPHANUMERIC_CHARSET, *p) - ALPHANUMERIC_CHARSET); accumCount++; if (accumCount == 2) { appendBitsToBuffer(accumData, 11, qrcode, &bitLen); accumData = 0; accumCount = 0; } } if (accumCount > 0) // 1 character remaining appendBitsToBuffer(accumData, 6, qrcode, &bitLen); } // Make QR Code encodeQrCodeTail(qrcode, bitLen, tempBuffer, version, ecl, mask, boostEcl); return true; } // Public function - see documentation comment in header file. bool qrcodegen_encodeBinary(uint8_t dataAndTemp[], size_t dataLen, uint8_t qrcode[], enum qrcodegen_Ecc ecl, int minVersion, int maxVersion, enum qrcodegen_Mask mask, bool boostEcl) { assert(dataAndTemp != NULL && qrcode != NULL); assert(qrcodegen_VERSION_MIN <= minVersion && minVersion <= maxVersion && maxVersion <= qrcodegen_VERSION_MAX); assert(0 <= (int)ecl && (int)ecl <= 3 && -1 <= (int)mask && (int)mask <= 7); // Set size to invalid value for safety qrcode[0] = 0; // Check length and find version if (dataLen > INT16_MAX / 8) return false; // Now dataLen * 8 <= 32767 <= INT_MAX int version = fitVersionToData(minVersion, maxVersion, ecl, (int)dataLen, (int)dataLen * 8, 8, 16, 16); if (version == 0) return false; // Make bit sequence and QR Code memset(qrcode, 0, qrcodegen_BUFFER_LEN_FOR_VERSION(version) * sizeof(qrcode[0])); int bitLen = 0; appendBitsToBuffer(4, 4, qrcode, &bitLen); appendBitsToBuffer((unsigned int)dataLen, (version <= 9 ? 8 : 16), qrcode, &bitLen); for (size_t i = 0; i < dataLen; i++) appendBitsToBuffer(dataAndTemp[i], 8, qrcode, &bitLen); encodeQrCodeTail(qrcode, bitLen, dataAndTemp, version, ecl, mask, boostEcl); return true; } // Scans the given string, returns the number of characters, and sets output variables. // Returns a negative number if the length would exceed INT16_MAX or textBits would exceed INT_MAX. // Note that INT16_MAX <= 32767 <= INT_MAX and INT16_MAX < 65535 <= SIZE_MAX. // If the return value is negative, then the pointees of output arguments might not be set. testable int getTextProperties(const char *text, bool *isNumeric, bool *isAlphanumeric, int *textBits) { int textLen = 0; *isNumeric = true; *isAlphanumeric = true; for (const char *p = text; *p != '\0'; p++, textLen++) { // Read every character if (textLen >= INT16_MAX) return -1; char c = *p; if (c < '0' || c > '9') { *isNumeric = false; *isAlphanumeric &= strchr(ALPHANUMERIC_CHARSET, c) != NULL; } } long tempBits; if (*isNumeric) tempBits = textLen * 3L + (textLen + 2L) / 3; else if (*isAlphanumeric) tempBits = textLen * 5L + (textLen + 1L) / 2; else // Binary mode tempBits = textLen * 8L; if (tempBits > INT_MAX) return -1; *textBits = (int)tempBits; return textLen; } // Returns the minimum possible version in the given range to fit one // segment with the given characteristics, or 0 if no version fits the data. static int fitVersionToData(int minVersion, int maxVersion, enum qrcodegen_Ecc ecl, int dataLen, int dataBitLen, int ver1To9LenBits, int ver10To26LenBits, int ver27To40LenBits) { assert(qrcodegen_VERSION_MIN <= minVersion && minVersion <= maxVersion && maxVersion <= qrcodegen_VERSION_MAX); assert(0 <= (int)ecl && (int)ecl <= 3); assert(dataLen >= 0 && dataBitLen >= 0); assert(1 <= ver1To9LenBits && ver1To9LenBits <= 16); assert(1 <= ver10To26LenBits && ver10To26LenBits <= 16); assert(1 <= ver27To40LenBits && ver27To40LenBits <= 16); for (int version = minVersion; ; version++) { int lengthBits; if (version <= 9) lengthBits = ver1To9LenBits; else if (version <= 26) lengthBits = ver10To26LenBits; else lengthBits = ver27To40LenBits; if (dataLen < (1L << lengthBits)) { int dataCapacityBits = getNumDataCodewords(version, ecl) * 8; // Number of data bits available int header = 4 + lengthBits; if (dataBitLen <= INT_MAX - header && header + dataBitLen <= dataCapacityBits) return version; // This version number is found to be suitable } if (version >= maxVersion) // All versions in the range could not fit the given data return 0; } } // Given a data bit sequence in dataAndQrcode without terminator or padding or ECC, plus the given QR Code // encoding parameters, this function handles ECC level boosting, bit stream termination and padding, // ECC computation, and block interleaving. Then the function renders the QR Code symbol back to the array // dataAndQrcode and handles automatic mask selection. The initial bit length must fit the given version and // ECC level, and each of the two arrays must have length at least qrcodegen_BUFFER_LEN_FOR_VERSION(version). static void encodeQrCodeTail(uint8_t dataAndQrcode[], int bitLen, uint8_t tempBuffer[], int version, enum qrcodegen_Ecc ecl, enum qrcodegen_Mask mask, bool boostEcl) { if (boostEcl) { if (bitLen <= getNumDataCodewords(version, qrcodegen_Ecc_MEDIUM ) * 8) ecl = qrcodegen_Ecc_MEDIUM ; if (bitLen <= getNumDataCodewords(version, qrcodegen_Ecc_QUARTILE) * 8) ecl = qrcodegen_Ecc_QUARTILE; if (bitLen <= getNumDataCodewords(version, qrcodegen_Ecc_HIGH ) * 8) ecl = qrcodegen_Ecc_HIGH ; } int dataCapacityBits = getNumDataCodewords(version, ecl) * 8; // Add terminator, bit padding, byte padding int terminatorBits = dataCapacityBits - bitLen; if (terminatorBits > 4) terminatorBits = 4; appendBitsToBuffer(0, terminatorBits, dataAndQrcode, &bitLen); appendBitsToBuffer(0, (8 - bitLen % 8) % 8, dataAndQrcode, &bitLen); for (uint8_t padByte = 0xEC; bitLen < dataCapacityBits; padByte ^= 0xEC ^ 0x11) appendBitsToBuffer(padByte, 8, dataAndQrcode, &bitLen); assert(bitLen % 8 == 0); // Draw function and data codeword modules appendErrorCorrection(dataAndQrcode, version, ecl, tempBuffer); initializeFunctionModules(version, dataAndQrcode); drawCodewords(tempBuffer, getNumRawDataModules(version) / 8, dataAndQrcode); drawWhiteFunctionModules(dataAndQrcode, version); initializeFunctionModules(version, tempBuffer); // Handle masking if (mask == qrcodegen_Mask_AUTO) { // Automatically choose best mask long minPenalty = LONG_MAX; for (int i = 0; i < 8; i++) { drawFormatBits(ecl, (enum qrcodegen_Mask)i, dataAndQrcode); applyMask(tempBuffer, dataAndQrcode, (enum qrcodegen_Mask)i); long penalty = getPenaltyScore(dataAndQrcode); if (penalty < minPenalty) { mask = (enum qrcodegen_Mask)i; minPenalty = penalty; } applyMask(tempBuffer, dataAndQrcode, (enum qrcodegen_Mask)i); // Undoes the mask due to XOR } } assert(0 <= (int)mask && (int)mask <= 7); drawFormatBits(ecl, mask, dataAndQrcode); applyMask(tempBuffer, dataAndQrcode, mask); } // Appends the given sequence of bits to the given byte-based bit buffer, increasing the bit length. testable void appendBitsToBuffer(unsigned int val, int numBits, uint8_t buffer[], int *bitLen) { assert(0 <= numBits && numBits <= 16 && (unsigned long)val >> numBits == 0); for (int i = numBits - 1; i >= 0; i--, (*bitLen)++) buffer[*bitLen >> 3] |= ((val >> i) & 1) << (7 - (*bitLen & 7)); } /*---- Error correction code generation functions ----*/ // Appends error correction bytes to each block of the given data array, then interleaves bytes // from the blocks and stores them in the result array. data[0 : rawCodewords - totalEcc] contains // the input data. data[rawCodewords - totalEcc : rawCodewords] is used as a temporary work area // and will be clobbered by this function. The final answer is stored in result[0 : rawCodewords]. testable void appendErrorCorrection(uint8_t data[], int version, enum qrcodegen_Ecc ecl, uint8_t result[]) { // Calculate parameter numbers assert(0 <= (int)ecl && (int)ecl < 4 && qrcodegen_VERSION_MIN <= version && version <= qrcodegen_VERSION_MAX); int numBlocks = NUM_ERROR_CORRECTION_BLOCKS[(int)ecl][version]; int blockEccLen = ECC_CODEWORDS_PER_BLOCK[(int)ecl][version]; int rawCodewords = getNumRawDataModules(version) / 8; int dataLen = rawCodewords - blockEccLen * numBlocks; int numShortBlocks = numBlocks - rawCodewords % numBlocks; int shortBlockDataLen = rawCodewords / numBlocks - blockEccLen; // Split data into blocks and append ECC after all data uint8_t generator[30]; calcReedSolomonGenerator(blockEccLen, generator); for (int i = 0, j = dataLen, k = 0; i < numBlocks; i++) { int blockLen = shortBlockDataLen; if (i >= numShortBlocks) blockLen++; calcReedSolomonRemainder(&data[k], blockLen, generator, blockEccLen, &data[j]); j += blockEccLen; k += blockLen; } // Interleave (not concatenate) the bytes from every block into a single sequence for (int i = 0, k = 0; i < numBlocks; i++) { for (int j = 0, l = i; j < shortBlockDataLen; j++, k++, l += numBlocks) result[l] = data[k]; if (i >= numShortBlocks) k++; } for (int i = numShortBlocks, k = (numShortBlocks + 1) * shortBlockDataLen, l = numBlocks * shortBlockDataLen; i < numBlocks; i++, k += shortBlockDataLen + 1, l++) result[l] = data[k]; for (int i = 0, k = dataLen; i < numBlocks; i++) { for (int j = 0, l = dataLen + i; j < blockEccLen; j++, k++, l += numBlocks) result[l] = data[k]; } } // Returns the number of 8-bit codewords that can be used for storing data (not ECC), // for the given version number and error correction level. The result is in the range [9, 2956]. testable int getNumDataCodewords(int version, enum qrcodegen_Ecc ecl) { int v = version, e = (int)ecl; assert(0 <= e && e < 4 && qrcodegen_VERSION_MIN <= v && v <= qrcodegen_VERSION_MAX); return getNumRawDataModules(v) / 8 - ECC_CODEWORDS_PER_BLOCK[e][v] * NUM_ERROR_CORRECTION_BLOCKS[e][v]; } // Returns the number of data bits that can be stored in a QR Code of the given version number, after // all function modules are excluded. This includes remainder bits, so it might not be a multiple of 8. // The result is in the range [208, 29648]. This could be implemented as a 40-entry lookup table. testable int getNumRawDataModules(int version) { assert(qrcodegen_VERSION_MIN <= version && version <= qrcodegen_VERSION_MAX); int result = (16 * version + 128) * version + 64; if (version >= 2) { int numAlign = version / 7 + 2; result -= (25 * numAlign - 10) * numAlign - 55; if (version >= 7) result -= 18 * 2; // Subtract version information } return result; } /*---- Reed-Solomon ECC generator functions ----*/ // Calculates the Reed-Solomon generator polynomial of the given degree, storing in result[0 : degree]. testable void calcReedSolomonGenerator(int degree, uint8_t result[]) { // Start with the monomial x^0 assert(1 <= degree && degree <= 30); memset(result, 0, degree * sizeof(result[0])); result[degree - 1] = 1; // Compute the product polynomial (x - r^0) * (x - r^1) * (x - r^2) * ... * (x - r^{degree-1}), // drop the highest term, and store the rest of the coefficients in order of descending powers. // Note that r = 0x02, which is a generator element of this field GF(2^8/0x11D). uint8_t root = 1; for (int i = 0; i < degree; i++) { // Multiply the current product by (x - r^i) for (int j = 0; j < degree; j++) { result[j] = finiteFieldMultiply(result[j], root); if (j + 1 < degree) result[j] ^= result[j + 1]; } root = finiteFieldMultiply(root, 0x02); } } // Calculates the remainder of the polynomial data[0 : dataLen] when divided by the generator[0 : degree], where all // polynomials are in big endian and the generator has an implicit leading 1 term, storing the result in result[0 : degree]. testable void calcReedSolomonRemainder(const uint8_t data[], int dataLen, const uint8_t generator[], int degree, uint8_t result[]) { // Perform polynomial division assert(1 <= degree && degree <= 30); memset(result, 0, degree * sizeof(result[0])); for (int i = 0; i < dataLen; i++) { uint8_t factor = data[i] ^ result[0]; memmove(&result[0], &result[1], (degree - 1) * sizeof(result[0])); result[degree - 1] = 0; for (int j = 0; j < degree; j++) result[j] ^= finiteFieldMultiply(generator[j], factor); } } // Returns the product of the two given field elements modulo GF(2^8/0x11D). // All inputs are valid. This could be implemented as a 256*256 lookup table. testable uint8_t finiteFieldMultiply(uint8_t x, uint8_t y) { // Russian peasant multiplication uint8_t z = 0; for (int i = 7; i >= 0; i--) { z = (z << 1) ^ ((z >> 7) * 0x11D); z ^= ((y >> i) & 1) * x; } return z; } /*---- Drawing function modules ----*/ // Clears the given QR Code grid with white modules for the given // version's size, then marks every function module as black. testable void initializeFunctionModules(int version, uint8_t qrcode[]) { // Initialize QR Code int qrsize = version * 4 + 17; memset(qrcode, 0, ((qrsize * qrsize + 7) / 8 + 1) * sizeof(qrcode[0])); qrcode[0] = (uint8_t)qrsize; // Fill horizontal and vertical timing patterns fillRectangle(6, 0, 1, qrsize, qrcode); fillRectangle(0, 6, qrsize, 1, qrcode); // Fill 3 finder patterns (all corners except bottom right) and format bits fillRectangle(0, 0, 9, 9, qrcode); fillRectangle(qrsize - 8, 0, 8, 9, qrcode); fillRectangle(0, qrsize - 8, 9, 8, qrcode); // Fill numerous alignment patterns uint8_t alignPatPos[7] = {0}; int numAlign = getAlignmentPatternPositions(version, alignPatPos); for (int i = 0; i < numAlign; i++) { for (int j = 0; j < numAlign; j++) { if ((i == 0 && j == 0) || (i == 0 && j == numAlign - 1) || (i == numAlign - 1 && j == 0)) continue; // Skip the three finder corners else fillRectangle(alignPatPos[i] - 2, alignPatPos[j] - 2, 5, 5, qrcode); } } // Fill version blocks if (version >= 7) { fillRectangle(qrsize - 11, 0, 3, 6, qrcode); fillRectangle(0, qrsize - 11, 6, 3, qrcode); } } // Draws white function modules and possibly some black modules onto the given QR Code, without changing // non-function modules. This does not draw the format bits. This requires all function modules to be previously // marked black (namely by initializeFunctionModules()), because this may skip redrawing black function modules. static void drawWhiteFunctionModules(uint8_t qrcode[], int version) { // Draw horizontal and vertical timing patterns int qrsize = qrcodegen_getSize(qrcode); for (int i = 7; i < qrsize - 7; i += 2) { setModule(qrcode, 6, i, false); setModule(qrcode, i, 6, false); } // Draw 3 finder patterns (all corners except bottom right; overwrites some timing modules) for (int i = -4; i <= 4; i++) { for (int j = -4; j <= 4; j++) { int dist = abs(i); if (abs(j) > dist) dist = abs(j); if (dist == 2 || dist == 4) { setModuleBounded(qrcode, 3 + j, 3 + i, false); setModuleBounded(qrcode, qrsize - 4 + j, 3 + i, false); setModuleBounded(qrcode, 3 + j, qrsize - 4 + i, false); } } } // Draw numerous alignment patterns uint8_t alignPatPos[7] = {0}; int numAlign = getAlignmentPatternPositions(version, alignPatPos); for (int i = 0; i < numAlign; i++) { for (int j = 0; j < numAlign; j++) { if ((i == 0 && j == 0) || (i == 0 && j == numAlign - 1) || (i == numAlign - 1 && j == 0)) continue; // Skip the three finder corners else { for (int k = -1; k <= 1; k++) { for (int l = -1; l <= 1; l++) setModule(qrcode, alignPatPos[i] + l, alignPatPos[j] + k, k == 0 && l == 0); } } } } // Draw version blocks if (version >= 7) { // Calculate error correction code and pack bits int rem = version; // version is uint6, in the range [7, 40] for (int i = 0; i < 12; i++) rem = (rem << 1) ^ ((rem >> 11) * 0x1F25); long data = (long)version << 12 | rem; // uint18 assert(data >> 18 == 0); // Draw two copies for (int i = 0; i < 6; i++) { for (int j = 0; j < 3; j++) { int k = qrsize - 11 + j; setModule(qrcode, k, i, (data & 1) != 0); setModule(qrcode, i, k, (data & 1) != 0); data >>= 1; } } } } // Draws two copies of the format bits (with its own error correction code) based // on the given mask and error correction level. This always draws all modules of // the format bits, unlike drawWhiteFunctionModules() which might skip black modules. static void drawFormatBits(enum qrcodegen_Ecc ecl, enum qrcodegen_Mask mask, uint8_t qrcode[]) { // Calculate error correction code and pack bits assert(0 <= (int)mask && (int)mask <= 7); int data; switch (ecl) { case qrcodegen_Ecc_LOW : data = 1; break; case qrcodegen_Ecc_MEDIUM : data = 0; break; case qrcodegen_Ecc_QUARTILE: data = 3; break; case qrcodegen_Ecc_HIGH : data = 2; break; default: assert(false); } data = data << 3 | (int)mask; // ecl-derived value is uint2, mask is uint3 int rem = data; for (int i = 0; i < 10; i++) rem = (rem << 1) ^ ((rem >> 9) * 0x537); data = data << 10 | rem; data ^= 0x5412; // uint15 assert(data >> 15 == 0); // Draw first copy for (int i = 0; i <= 5; i++) setModule(qrcode, 8, i, ((data >> i) & 1) != 0); setModule(qrcode, 8, 7, ((data >> 6) & 1) != 0); setModule(qrcode, 8, 8, ((data >> 7) & 1) != 0); setModule(qrcode, 7, 8, ((data >> 8) & 1) != 0); for (int i = 9; i < 15; i++) setModule(qrcode, 14 - i, 8, ((data >> i) & 1) != 0); // Draw second copy int qrsize = qrcodegen_getSize(qrcode); for (int i = 0; i <= 7; i++) setModule(qrcode, qrsize - 1 - i, 8, ((data >> i) & 1) != 0); for (int i = 8; i < 15; i++) setModule(qrcode, 8, qrsize - 15 + i, ((data >> i) & 1) != 0); setModule(qrcode, 8, qrsize - 8, true); } // Calculates the positions of alignment patterns in ascending order for the given version number, // storing them to the given array and returning an array length in the range [0, 7]. testable int getAlignmentPatternPositions(int version, uint8_t result[7]) { if (version == 1) return 0; int numAlign = version / 7 + 2; int step; if (version != 32) { // ceil((size - 13) / (2*numAlign - 2)) * 2 step = (version * 4 + numAlign * 2 + 1) / (2 * numAlign - 2) * 2; } else // C-C-C-Combo breaker! step = 26; for (int i = numAlign - 1, pos = version * 4 + 10; i >= 1; i--, pos -= step) result[i] = pos; result[0] = 6; return numAlign; } // Sets every pixel in the range [left : left + width] * [top : top + height] to black. static void fillRectangle(int left, int top, int width, int height, uint8_t qrcode[]) { for (int dy = 0; dy < height; dy++) { for (int dx = 0; dx < width; dx++) setModule(qrcode, left + dx, top + dy, true); } } /*---- Drawing data modules and masking ----*/ // Draws the raw codewords (including data and ECC) onto the given QR Code. This requires the initial state of // the QR Code to be black at function modules and white at codeword modules (including unused remainder bits). static void drawCodewords(const uint8_t data[], int dataLen, uint8_t qrcode[]) { int qrsize = qrcodegen_getSize(qrcode); int i = 0; // Bit index into the data // Do the funny zigzag scan for (int right = qrsize - 1; right >= 1; right -= 2) { // Index of right column in each column pair if (right == 6) right = 5; for (int vert = 0; vert < qrsize; vert++) { // Vertical counter for (int j = 0; j < 2; j++) { int x = right - j; // Actual x coordinate bool upward = ((right + 1) & 2) == 0; int y = upward ? qrsize - 1 - vert : vert; // Actual y coordinate if (!getModule(qrcode, x, y) && i < dataLen * 8) { bool black = ((data[i >> 3] >> (7 - (i & 7))) & 1) != 0; setModule(qrcode, x, y, black); i++; } // If there are any remainder bits (0 to 7), they are already // set to 0/false/white when the grid of modules was initialized } } } assert(i == dataLen * 8); } // XORs the data modules in this QR Code with the given mask pattern. Due to XOR's mathematical // properties, calling applyMask(..., m) twice with the same value is equivalent to no change at all. // This means it is possible to apply a mask, undo it, and try another mask. Note that a final // well-formed QR Code symbol needs exactly one mask applied (not zero, not two, etc.). static void applyMask(const uint8_t functionModules[], uint8_t qrcode[], enum qrcodegen_Mask mask) { assert(0 <= (int)mask && (int)mask <= 7); // Disallows qrcodegen_Mask_AUTO int qrsize = qrcodegen_getSize(qrcode); for (int y = 0; y < qrsize; y++) { for (int x = 0; x < qrsize; x++) { if (getModule(functionModules, x, y)) continue; bool invert; switch ((int)mask) { case 0: invert = (x + y) % 2 == 0; break; case 1: invert = y % 2 == 0; break; case 2: invert = x % 3 == 0; break; case 3: invert = (x + y) % 3 == 0; break; case 4: invert = (x / 3 + y / 2) % 2 == 0; break; case 5: invert = x * y % 2 + x * y % 3 == 0; break; case 6: invert = (x * y % 2 + x * y % 3) % 2 == 0; break; case 7: invert = ((x + y) % 2 + x * y % 3) % 2 == 0; break; default: assert(false); } bool val = getModule(qrcode, x, y); setModule(qrcode, x, y, val ^ invert); } } } // Calculates and returns the penalty score based on state of the given QR Code's current modules. // This is used by the automatic mask choice algorithm to find the mask pattern that yields the lowest score. static long getPenaltyScore(const uint8_t qrcode[]) { int qrsize = qrcodegen_getSize(qrcode); long result = 0; // Adjacent modules in row having same color for (int y = 0; y < qrsize; y++) { bool colorX; for (int x = 0, runX; x < qrsize; x++) { if (x == 0 || getModule(qrcode, x, y) != colorX) { colorX = getModule(qrcode, x, y); runX = 1; } else { runX++; if (runX == 5) result += PENALTY_N1; else if (runX > 5) result++; } } } // Adjacent modules in column having same color for (int x = 0; x < qrsize; x++) { bool colorY; for (int y = 0, runY; y < qrsize; y++) { if (y == 0 || getModule(qrcode, x, y) != colorY) { colorY = getModule(qrcode, x, y); runY = 1; } else { runY++; if (runY == 5) result += PENALTY_N1; else if (runY > 5) result++; } } } // 2*2 blocks of modules having same color for (int y = 0; y < qrsize - 1; y++) { for (int x = 0; x < qrsize - 1; x++) { bool color = getModule(qrcode, x, y); if ( color == getModule(qrcode, x + 1, y) && color == getModule(qrcode, x, y + 1) && color == getModule(qrcode, x + 1, y + 1)) result += PENALTY_N2; } } // Finder-like pattern in rows for (int y = 0; y < qrsize; y++) { for (int x = 0, bits = 0; x < qrsize; x++) { bits = ((bits << 1) & 0x7FF) | (getModule(qrcode, x, y) ? 1 : 0); if (x >= 10 && (bits == 0x05D || bits == 0x5D0)) // Needs 11 bits accumulated result += PENALTY_N3; } } // Finder-like pattern in columns for (int x = 0; x < qrsize; x++) { for (int y = 0, bits = 0; y < qrsize; y++) { bits = ((bits << 1) & 0x7FF) | (getModule(qrcode, x, y) ? 1 : 0); if (y >= 10 && (bits == 0x05D || bits == 0x5D0)) // Needs 11 bits accumulated result += PENALTY_N3; } } // Balance of black and white modules int black = 0; for (int y = 0; y < qrsize; y++) { for (int x = 0; x < qrsize; x++) { if (getModule(qrcode, x, y)) black++; } } int total = qrsize * qrsize; // Find smallest k such that (45-5k)% <= dark/total <= (55+5k)% for (int k = 0; black*20L < (9L-k)*total || black*20L > (11L+k)*total; k++) result += PENALTY_N4; return result; } /*---- Basic QR Code information ----*/ // Public function - see documentation comment in header file. int qrcodegen_getSize(const uint8_t qrcode[]) { assert(qrcode != NULL); int result = qrcode[0]; assert((qrcodegen_VERSION_MIN * 4 + 17) <= result && result <= (qrcodegen_VERSION_MAX * 4 + 17)); return result; } // Public function - see documentation comment in header file. bool qrcodegen_getModule(const uint8_t qrcode[], int x, int y) { assert(qrcode != NULL); int qrsize = qrcode[0]; return (0 <= x && x < qrsize && 0 <= y && y < qrsize) && getModule(qrcode, x, y); } // Gets the module at the given coordinates, which must be in bounds. testable bool getModule(const uint8_t qrcode[], int x, int y) { int qrsize = qrcode[0]; assert(21 <= qrsize && qrsize <= 177 && 0 <= x && x < qrsize && 0 <= y && y < qrsize); int index = y * qrsize + x; int bitIndex = index & 7; int byteIndex = (index >> 3) + 1; return ((qrcode[byteIndex] >> bitIndex) & 1) != 0; } // Sets the module at the given coordinates, which must be in bounds. testable void setModule(uint8_t qrcode[], int x, int y, bool isBlack) { int qrsize = qrcode[0]; assert(21 <= qrsize && qrsize <= 177 && 0 <= x && x < qrsize && 0 <= y && y < qrsize); int index = y * qrsize + x; int bitIndex = index & 7; int byteIndex = (index >> 3) + 1; if (isBlack) qrcode[byteIndex] |= 1 << bitIndex; else qrcode[byteIndex] &= (1 << bitIndex) ^ 0xFF; } // Sets the module at the given coordinates, doing nothing if out of bounds. testable void setModuleBounded(uint8_t qrcode[], int x, int y, bool isBlack) { int qrsize = qrcode[0]; if (0 <= x && x < qrsize && 0 <= y && y < qrsize) setModule(qrcode, x, y, isBlack); } /*---- Segment handling ----*/ bool qrcodegen_isAlphanumeric(const char *text) { assert(text != NULL); for (; *text != '\0'; text++) { if (strchr(ALPHANUMERIC_CHARSET, *text) == NULL) return false; } return true; } bool qrcodegen_isNumeric(const char *text) { assert(text != NULL); for (; *text != '\0'; text++) { if (*text < '0' || *text > '9') return false; } return true; } size_t qrcodegen_calcSegmentBufferSize(enum qrcodegen_Mode mode, size_t numChars) { int temp = calcSegmentBitLength(mode, numChars); if (temp == -1) return SIZE_MAX; assert(0 <= temp && temp <= INT16_MAX); return ((size_t)temp + 7) / 8; } // Returns the number of data bits needed to represent a segment // containing the given number of characters using the given mode. Notes: // - Returns -1 on failure, i.e. numChars > INT16_MAX or // the number of needed bits exceeds INT16_MAX (i.e. 32767). // - Otherwise, all valid results are in the range [0, INT16_MAX]. // - For byte mode, numChars measures the number of bytes, not Unicode code points. // - For ECI mode, numChars must be 0, and the worst-case number of bits is returned. // An actual ECI segment can have shorter data. For non-ECI modes, the result is exact. testable int calcSegmentBitLength(enum qrcodegen_Mode mode, size_t numChars) { const int LIMIT = INT16_MAX; // Can be configured as high as INT_MAX if (numChars > (unsigned int)LIMIT) return -1; int n = (int)numChars; int result = -2; if (mode == qrcodegen_Mode_NUMERIC) { // n * 3 + ceil(n / 3) if (n > LIMIT / 3) goto overflow; result = n * 3; int temp = n / 3 + (n % 3 == 0 ? 0 : 1); if (temp > LIMIT - result) goto overflow; result += temp; } else if (mode == qrcodegen_Mode_ALPHANUMERIC) { // n * 5 + ceil(n / 2) if (n > LIMIT / 5) goto overflow; result = n * 5; int temp = n / 2 + n % 2; if (temp > LIMIT - result) goto overflow; result += temp; } else if (mode == qrcodegen_Mode_BYTE) { if (n > LIMIT / 8) goto overflow; result = n * 8; } else if (mode == qrcodegen_Mode_KANJI) { if (n > LIMIT / 13) goto overflow; result = n * 13; } else if (mode == qrcodegen_Mode_ECI && numChars == 0) result = 3 * 8; assert(0 <= result && result <= LIMIT); return result; overflow: return -1; } struct qrcodegen_Segment qrcodegen_makeBytes(const uint8_t data[], size_t len, uint8_t buf[]) { assert(data != NULL || len == 0); struct qrcodegen_Segment result; result.mode = qrcodegen_Mode_BYTE; result.bitLength = calcSegmentBitLength(result.mode, len); assert(result.bitLength != -1); result.numChars = (int)len; if (len > 0) memcpy(buf, data, len * sizeof(buf[0])); result.data = buf; return result; } struct qrcodegen_Segment qrcodegen_makeNumeric(const char *digits, uint8_t buf[]) { assert(digits != NULL); struct qrcodegen_Segment result; size_t len = strlen(digits); result.mode = qrcodegen_Mode_NUMERIC; int bitLen = calcSegmentBitLength(result.mode, len); assert(bitLen != -1); result.numChars = (int)len; if (bitLen > 0) memset(buf, 0, ((size_t)bitLen + 7) / 8 * sizeof(buf[0])); result.bitLength = 0; unsigned int accumData = 0; int accumCount = 0; for (; *digits != '\0'; digits++) { char c = *digits; assert('0' <= c && c <= '9'); accumData = accumData * 10 + (c - '0'); accumCount++; if (accumCount == 3) { appendBitsToBuffer(accumData, 10, buf, &result.bitLength); accumData = 0; accumCount = 0; } } if (accumCount > 0) // 1 or 2 digits remaining appendBitsToBuffer(accumData, accumCount * 3 + 1, buf, &result.bitLength); assert(result.bitLength == bitLen); result.data = buf; return result; } struct qrcodegen_Segment qrcodegen_makeAlphanumeric(const char *text, uint8_t buf[]) { assert(text != NULL); struct qrcodegen_Segment result; size_t len = strlen(text); result.mode = qrcodegen_Mode_ALPHANUMERIC; int bitLen = calcSegmentBitLength(result.mode, len); assert(bitLen != -1); result.numChars = (int)len; if (bitLen > 0) memset(buf, 0, ((size_t)bitLen + 7) / 8 * sizeof(buf[0])); result.bitLength = 0; unsigned int accumData = 0; int accumCount = 0; for (; *text != '\0'; text++) { const char *temp = strchr(ALPHANUMERIC_CHARSET, *text); assert(temp != NULL); accumData = accumData * 45 + (temp - ALPHANUMERIC_CHARSET); accumCount++; if (accumCount == 2) { appendBitsToBuffer(accumData, 11, buf, &result.bitLength); accumData = 0; accumCount = 0; } } if (accumCount > 0) // 1 character remaining appendBitsToBuffer(accumData, 6, buf, &result.bitLength); assert(result.bitLength == bitLen); result.data = buf; return result; } struct qrcodegen_Segment qrcodegen_makeEci(long assignVal, uint8_t buf[]) { struct qrcodegen_Segment result; result.mode = qrcodegen_Mode_ECI; result.numChars = 0; result.bitLength = 0; if (0 <= assignVal && assignVal < (1 << 7)) { memset(buf, 0, 1 * sizeof(buf[0])); appendBitsToBuffer(assignVal, 8, buf, &result.bitLength); } else if ((1 << 7) <= assignVal && assignVal < (1 << 14)) { memset(buf, 0, 2 * sizeof(buf[0])); appendBitsToBuffer(2, 2, buf, &result.bitLength); appendBitsToBuffer(assignVal, 14, buf, &result.bitLength); } else if ((1 << 14) <= assignVal && assignVal < 1000000L) { memset(buf, 0, 3 * sizeof(buf[0])); appendBitsToBuffer(6, 3, buf, &result.bitLength); appendBitsToBuffer(assignVal >> 10, 11, buf, &result.bitLength); appendBitsToBuffer(assignVal & 0x3FF, 10, buf, &result.bitLength); } else assert(false); result.data = buf; return result; }